精英家教网 > 初中数学 > 题目详情

【题目】阅读下列解方程组的部分过程,回答下列问题

解方程组

现有两位同学的解法如下:

解法一;由①,得x2y+5,③

把③代入②,得3(2y+5)2y3……

解法二:①﹣②,得﹣2x2……

(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________

(2)请你任选一种解法,把完整的解题过程写出来

【答案】(1)代入消元法;加减消元法;基本思路都是消元;(2).

【解析】

1)分析两种解法的具体方法,找出两种方法的共同点即可;

2)将两种方法补充完整即可.

解:(1)解法一使用的具体方法是代入消元法,解法二使用的具体方法是加减消元法,以上两种方法的共同点是基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题)

故答案为:代入消元法,加减消元法,基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题)

(2)方法一:由①得:x2y+5③,

把③代入②得:3(2y+5)2y3

整理得:4y=﹣12

解得:y=﹣3

y=﹣3代入③,得 x=﹣1

则方程组的解为

方法二:①﹣②,得﹣2x2

解得:x=﹣1

x=﹣1代入①,得﹣12y5

解得:y=﹣3

则方程组的解为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2

C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.
(1)求直线l1的表达式;
(2)当x≥4时,不等式k1x+b>k2x+2恒成立,请写出一个满足题意的k2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(
A.7.2 cm
B.5.4 cm
C.3.6 cm
D.0.6 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200GH型电子产品的总任务.已知每台GH型产品由4G型装置和3H型装置配套组成.工厂现有80名工人,每个工人每天能加工6G型装置或3H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的GH型装置数量正好组成GH型产品.

(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?

(2)工厂补充10名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4G型装置,则补充新工人后每天能配套生产多少产品?

(3)为了在规定期限内完成总任务,请问至少需要补充多少名(2)中的新工人才能在规定期内完成总任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2,直线l3和直线l1l2交于点CD,在直线CD上有一点P

1)如果P点在CD之间运动时,问∠PAC∠APB∠PBD有怎样的数量关系?请说明理由.

2)若点PCD两点的外侧运动时(P点与点CD不重合),试探索∠PAC∠APB∠PBD之间的关系又是如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别沿两条直线行走,并同时到达 DE 两地,DAABEBABDE 与路段AB 的距离相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.

(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.

查看答案和解析>>

同步练习册答案