精英家教网 > 初中数学 > 题目详情
2.如图,Rt△ABC中,∠C=90°,BD=4,CD=2,∠ADB=3∠ABD,则AD=$\frac{8\sqrt{10}}{5}$.

分析 如图,作BD的垂直平分线,交AB于点E,连接DE,设∠ABD=α,证明∠AED=∠ADE=2α,AE=AD;证明AE=2BE(设为2λ),得到AD=AE=2λ;利用勾股定理,可证明4λ2-4=9λ2-36,解得:λ=$\frac{4\sqrt{10}}{5}$,求出AD即可解决问题.

解答 解:如图,作BD的垂直平分线,交AB于点E,连接DE,设∠ABD=α,设BE=λ,
则BE=DE=λ,BF=DF=2,CF=4;
∴∠ABD=∠EDB=α;
∵∠AED=∠ABD+∠EDB=2α,∠ADB=3∠ABD=3α,
∴∠AED=∠ADE=2α,AE=AD;
∵EF⊥BC,AC⊥BC,
∴EF∥AC,$\frac{AE}{BE}$=$\frac{CF}{BF}$=2,
∴AE=2BE=2λ,
∴AD=AE=2λ;
由勾股定理得:
AC2=AD2-DC2=4λ2-4,
AC2=AB2-BC2=9λ2-36,
∴4λ2-4=9λ2-36,
解得:λ=$\frac{4\sqrt{10}}{5}$,
∴AD=$\frac{8\sqrt{10}}{5}$,
故答案为:$\frac{8\sqrt{10}}{5}$.

点评 本题主要考查了相似三角形的判定及其性质、勾股定理及其应用问题,解题的关键是作辅助线,构造相似三角形,运用相似三角形的判定及其性质来分析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,正△ABC的边长是2,点M是边AB上任意一点(可与A,B重合),作MD⊥BC于D,作DE⊥AC于E,作EN⊥AB于N,给出以下结论:①MN的最大值是$\frac{3}{2}$;②当M是AB的中点时,AN=$\frac{5}{8}$;③当M,N重合时,AN=$\frac{2}{3}$;④当△MBD≌△EAN时,AN=$\frac{1}{2}$,其中正确的结论有②③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知a,b,c分别是△ABC的∠A,∠B,∠C的对边,∠C=90°,且cosB=$\frac{3}{5}$,b-a=3.
(1)求a,b,c的值;
(2)若关于x的一元二次方程x2-3(m+1)x+m2-9m+20=0有两个实数根,是否存在整数m,使方程两个实数根的平方和等于Rt△ABC的斜边c的平方?如果存在,请求出满足条件的m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,CD=4,DE=2.5,∠EDF=90°,则DF长是$\frac{10}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AB,CD相交于点O,OE是∠AOC的平分线,∠BOC=130°,∠BOF=140°,则∠EOF的度数为(  )
A.95B.65C.50D.40

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知方程x2-3x-2=0的两根为x1、x2,则x1+x2=3,x12+x22=13.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,AB∥DE,∠ABC=25°,∠BCD=75°,则∠CDE=(  )
A.100°B.70°C.60°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,
(1)用树状图(或表格)表示所有情况;
(2)求甲伸出小拇指取胜的概率;
(3)求乙取胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若x2=4,y2=9,则|x+y|=1或5.

查看答案和解析>>

同步练习册答案