精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.

(1)求 的长.
(2)求弦BD的长.

【答案】
(1)解:如图,连接OC,OD,

∵AB是⊙O的直径,

∴∠ACB=∠ADB=90°,

在Rt△ABC中,

∴∠BAC=60°,

∴∠BOC=2∠BAC=2×60°=120°,

的长=


(2)解:∵CD平分∠ACB,

∴∠ACD=∠BCD,

∴∠AOD=∠BOD,

∴AD=BD,

∴∠ABD=∠BAD=45°,

在Rt△ABD中,

BD=AB×sin45°=10×


【解析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出 的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.
【考点精析】根据题目的已知条件,利用等腰直角三角形和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点PA点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数   ;点P表示的数   (用含t的代数式表示)

(2)MAP的中点,NBP的中点,在点P运动的过程中,线段MN的长度是   

(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?

(4)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有人,在扇形统计图中,m的值是
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E,F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义[pq]为一次函数ypxq的特征数.

(1)若特征数是[k-1,k2-1]的一次函数为正比例函数,求k的值;

(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且OAB的面积为4(O为原点),若一次函数的图象过AB两点,求该一次函数的特征数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】标准的篮球场长28m,宽15m.在某场篮球比赛中,红队甲、乙两名运动员分别在AB处,位置如图①所示,已知点B到中线EF的距离为6m,点C到中线EF的距离为8m,运动员甲在A处抢到篮球后,迅速将球抛向C处,球的平均运行速度是m/s,运动员乙在B处看到后同时快跑到C处并恰好接住了球(ABC在同一直线上).图②中l1l2分别表示球、运动员乙离A处的距离y(m)与从A处抛球后的时间x(s)的关系图象

(1)直接写出abc的值;

(2)求运动员乙由B处跑向C处的过程中y(m)x(s)的函数解析式l2

(3)运动员要接住球,一般在球距离自己还有2m远时要做接球准备,求运动员乙准备接此球的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,ACEF交于点H.

(1)求证:△ABE≌△AGF;

(2)AB=6,BC=8,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?

(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

查看答案和解析>>

同步练习册答案