【题目】已知抛物线y=ax2+bx+2经过点A(﹣1,﹣1)和点B(3,﹣1).
(1)求这条抛物线所对应的二次函数的表达式.
(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.
【答案】(1)y=﹣x2+2x+2;(2)抛物线开口向下,对称轴是:x=1,顶点坐标为(1,3),二次函数的最大值为3.
【解析】
(1)由条件可知点A和点B的坐标,代入解析式可得到关于a和b的二元一次方程组,解得a和b,可写出二次函数解析式;(2)根据a的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.
解:(1)将点A(﹣1,﹣1)和点B(3,﹣1)代入y=ax2+bx+2中,
得,
∴a=﹣1,b=2,
∴y=﹣x2+2x+2;
(2)∵y=﹣x2+2x+2=﹣(x2﹣2x+1﹣1)+2=﹣(x﹣1)2+3,
∵a=﹣1,
∴抛物线开口向下,
对称轴是:x=1,顶点坐标为(1,3),二次函数的最大值为3.
科目:初中数学 来源: 题型:
【题目】如图①,双曲线y=(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.
(1)求双曲线和抛物线的解析式;
(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;
(3)如图②,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为( )
A. B. ﹣1 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)请你添加一个适当的条件 ,使得四边形ABCD是平行四边形,并证明你的结论;
(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知抛物线与x轴交于点A、在B左侧,与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且,则点P的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与反比例函数(>0)的图象分别交于点 A(,4)和点B(8,),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)观察图象,当时,直接写出的解集;
(3)若点P是轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com