【题目】如图①,双曲线y=(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.
(1)求双曲线和抛物线的解析式;
(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;
(3)如图②,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求的值.
【答案】(1)抛物线的解析式为:,双曲线的解析式为:y=.(2)存在点P(,1),使得∠POE+∠BCD=90°.(3).
【解析】
(1)根据抛物线y=ax2+bx(a≠0)过B(3,1),C(﹣1,﹣3),代入计算即可得到抛物线的解析式. 把B(3,1)代入y=(k≠0)计算可得双曲线的解析式.
(2)根据B、C点的坐标计算BC所在的直线方程,根据直线方程可得与坐标轴的交点,因此可计算的OM的长度,再计算BO、CO的长度,可得tan∠COM,根据等量替换可得tan∠POE,设P点的横坐标,即可表示纵坐标,进而计算的P点的坐标.
(3)首先根据C点的坐标,计算CO所在直线的解析式,再根据CO所在的直线与双曲线的交点为D,计算D点的坐标,根据B点的坐标计算OB所在直线的斜率,进而计算直线l的解析式,再根据直线l和DF所在的直线交点为F,计算点F的坐标,进而计算DF的长度,再根据相似比例可得.
解:(1)∵抛物线y=ax2+bx(a≠0)过B(3,1),C(﹣1,﹣3),
∴ ,
解得: ,
∴抛物线的解析式为:y=﹣x2+x,
把B(3,1)代入y=(k≠0)得:1=,
解得:k=3,
∴双曲线的解析式为:y=.
(2)存在点P,使得∠POE+∠BCD=90°;
∵B(3,1),C(﹣1,﹣3),设直线BC为y=kx+n,
∴ ,
解得k=1,n=﹣2,
∴直线BC为:y=x﹣2,
∴直线BC与坐标轴的交点(2,0),(0,﹣2),
过O作OM⊥BC,则OM=,
∵B(3,1),C(﹣1,﹣3),
∴OB=OC=,
∴BM=
∴tan∠COM=,
∵∠COM+∠BCD=90°,∠POE+∠BCD=90°,
∴∠POE=∠COM,
∴tan∠POE=2,
∵P点是抛物线上的点,设P(m,﹣m2+m),
∴ ,
解得:m=,
∴P(,1).
综上所述,存在点P(,1),使得∠POE+∠BCD=90°.
(3)∵直线CO过C(﹣1,﹣3),
∴直线CO的解析式为y=3x,
解 ,
解得,
∴D(1,3),
∵B(3,1),
∴直线OB的斜率= ,
∵直线l⊥OB,过点D作DF⊥l于点F,
∴DF∥OB,
∴直线l的斜率=﹣3,直线DF的斜率= ,
∵直线l过B(3,1),直线DF过D(1,3),
∴直线l的解析式为y=﹣3x+10,直线DF解析式为y=x+,
解 ,
解得 ,
∴F(,),
∴DF== ,
∵DF∥OB,OB= ,
∴△DNF∽△BNO,
∴ .
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B(﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数()的图象经过圆心P,则k= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A到点B,从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN=15°,山坡路BC与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD,降低后BD与CM相交于点D,点D,A,B在同一条直线上,即∠DAN=15°.为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有_____人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+2经过点A(﹣1,﹣1)和点B(3,﹣1).
(1)求这条抛物线所对应的二次函数的表达式.
(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com