精英家教网 > 初中数学 > 题目详情
如图2,六边形ABCDEF是⊙O的内接正六边形,若,则向量可表示为(   ).
A.B.C.D.
D
根据圆的内接正六边形的性质,平行四边形法则,可求得

解:连接OD,
∵六边形ABCDEF是⊙O的内接正六边形,
∴∠COD=∠OCD=∠ODC=∠ODE=∠OED=∠DOE=60°,
∴∠EOC=∠EDC=120°,
∴四边形OCDE是平行四边形,
∴OA=OD,OC=DE,
==-=-==
=+=-+(-)=--
故选D.
此题考查了平面向量的知识,以及圆的内接正六边形的知识.注意平面向量是有方向性的,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,为半圆的直径,延长到点,使切半圆于点,点是弧AC上和点不重合的一点,则的度数为    .(圆的性质、切线的性质、解三角形)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,的直径,弦是弦的中点,.若动点的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为
A.B.1C.或1D.或1 或

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,第(1)题7分,第(2)题5分)
如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,扇形的半径为6,圆心角为120°,用这个扇形围成一个圆锥的侧面,
所得圆锥的底面半径为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段A
上.
(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;
(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图,已知直角梯形ABCD中,AD//BC, DC⊥BC,AB=5,BC=6,∠B=53°.点O为BC边上的一个点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.

(1)当BO=AD时,求BP的长;
(2)在点O运动的过程中,线段 BP与MN能否相等?若能,请求出当BO为多长时BP=MN;若不能,请说明理由;
(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围.
(参考数据:cos53°≈0.6;sin53°≈0.8;tan74°3.5)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形铁皮上剪下一个圆和扇形(圆与扇形外切,且与正方形的边相切),
使之恰好围成如图所示的一个圆锥模型,设圆半径为,扇形半径为R,则R与的关系是  (   )
A.R=2rB.R="4r"
C.R=2πrD.R=4πr

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•常德)已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,
(1)如图1,若△ABC是等腰三角形,且AC=BC,在上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;
(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2

查看答案和解析>>

同步练习册答案