精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点B的坐标为(10

1)在图l中画出ABC关于x轴对称的A1B1C1

2)在图2中,以点O为位似中心,将ABC放大,使放大后的A2B2C2ABC的对应边的比为21(画出一种即可). 直接写出点A的对应点A2的坐标.

【答案】1)作图见解析;

2作图见解析;此时点A的对应点A2的坐标是(-4-4)或(44

【解析】试题分析:(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;

(2)延长OBB2,使OB2=2OB,按同样的方法得到点A2、C2,然后顺次连接,写出A2的坐标即可.(也可以反向延长).

试题解析:(1)如图所示;

(2)如图所示,A2的坐标是(-4,-4)或(4,4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数在第一象限内的图像交于两点.

1)求反比例函数的表达式;

2)在第一象限内,当一次函数的值大于反比例函数的值时,写出自变量的取值范围;

3)求面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)

若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B10),C30),D34).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点PQ的运动速度均为每秒1个单位.运动时间为t秒.过点PPE⊥ABAC于点E

1)直接写出点A的坐标,并求出抛物线的解析式;

2)过点EEF⊥ADF,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?

3)在动点PQ运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以CQEH为顶点的四边形为菱形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有AB两种型号的挖掘机,已知1A型和2B型挖掘机同时施工1小时共挖土80立方米,2A型和3B型挖掘机同时施工1小时共挖土140立方米.每台A型挖掘机一个小时的施工费用是350元,每台B型挖掘机一个小时的施工费用是200元.

1)分别求每台A型,B型挖掘机一小时各挖土多少立方米?

2)若A型和B型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.

(1)求该商场至少购买丙种电视机多少台?

(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016山东省泰安市)某学校将为初一学生开设ABCDEF6门选修课,现选取若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成如图统计图表(不完整)

根据图表提供的信息,下列结论错误的是(  )

A. 这次被调查的学生人数为400

B. 扇形统计图中E部分扇形的圆心角为72°

C. 被调查的学生中喜欢选修课EF的人数分别为80,70

D. 喜欢选修课C的人数最少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x22m+1x+mm+1=0

(1)求证:方程总有两个不相等的实数根;

(2)设方程的两根分别为x1、x2,求的最小值.

查看答案和解析>>

同步练习册答案