【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)的对称轴与x轴交于点A,将点A向右平移3个单位长度,向上平移2个单位长度,得到点B.
⑴点A的坐标为 ,点B的坐标为 ;
⑵若a=﹣1,当m﹣1≤x≤m+1时,函数y=ax2﹣4ax+3a﹣2的最大值为﹣10,求m的值;
⑶若抛物线与线段AB有公共点,求a的取值范围.
【答案】(1)(2,0),(5,2);(2)m的值为6或﹣2.(3)a或a≤﹣2.
【解析】
(1)利用对称轴公式可求出对称轴,即可得到A点坐标,然后利用点的平移得到B点坐标;
(2)将a=﹣1代入抛物线解析式,将解析式整理成为顶点式,找到对称轴,然后利用函数图象的增减性进行讨论即可得出答案;
(3)分a>0和a<0两种情况考虑,画出抛物线与AB相交的图像,数形结合可得a的取值范围.
解:(1)抛物线的对称轴为直线x=﹣=2,
∴点A的坐标为(2,0).
∵将点A向右平移3个单位长度,向上平移2个单位长度,得到点B,
∴点B的坐标为(2+3,0+2),即(5,2).
故答案为:(2,0),(5,2);
(2)∵a=﹣1
∴抛物线解析式为y=﹣x2+4x﹣5
∴,
确定出其对称轴为x=2,由题意知最大值为﹣10,
当m﹣1>2时,即m>3时,
﹣(m﹣1﹣2)2﹣1=﹣10,
解得m1=6,m2=0(舍去),
当m+1<2时,即m<1,
﹣(m+1﹣2)2﹣1=﹣10,
解得m1=4(舍去),m2=﹣2.
综合以上可得m的值为6或﹣2.
(3)分a>0和a<0两种情况考虑:
①当a>0时,如图1所示.
∴,
∴a;
②当a<0时,如图2所示.
∵,
∴
∴.
综上所述:a的取值范围为或.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,点E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,连接AF、DF,则的最小值是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B是反比例函数图象上的两点,过点A作AC⊥y轴,垂足为C,交OB于点D,且D为OB的中点,若△ABO的面积为4,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A和B.已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过28件.现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣4x+3和一次函数y=﹣x+1,我们把y=t(x2﹣4x+3)+(1﹣t)(﹣x+1)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:
(尝试)
⑴判断点A是否在抛物线E上;
⑵求n的值.
(发现)通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,请你求出定点的坐标.
(应用)二次函数y=﹣3x2+8x﹣5是二次函数y=x2﹣4x+3和一次函数y=﹣x+1的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,其对称轴与抛物线相交于点M,与x轴相交于点N,点P是线段MN上的一个动点,连接CP,过点P作PE⊥CP交x轴于点E.
(1)求抛物线的顶点M的坐标;
(2)当点E与原点O的重合时,求点P的坐标;
(3)求动点E到抛物线对称轴的最大距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△OAB中,∠OAB=90°,OA=AB=5,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.
(1)线段OA1的长是 ,∠AOB1的度数是 ;
(2)连接AA1,求证:四边形OAA1B1是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com