【题目】如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,点E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,连接AF、DF,则的最小值是__.
【答案】5
【解析】
连接AE,CF,易证△ADE≌△CDF,所以CF=AE,可知F点在以C为圆心,2为半径的圆上运动,作出运动轨迹,在CD上截取CM=CF=1,利用相似可得FM=DF,当A、F、M三点共线时,AM的长度即为的最小值.
如图,连接AE,CF,
∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,
∴∠ADE=∠CDF
在△ADE和△CDF中,
∴△ADE≌△CDF(SAS)
∴CF=AE,
∴F点在以C为圆心,2为半径的圆上运动,
如图所示,以C为圆心,2为半径作圆C,
在CD上截取CM=CF=1,
∵,,
∴
又∵∠FCM=∠DCF
∴△CMF∽△CFD
∴,即
∴
当A、F、M三点共线时,AM的长度即为的最小值,
在Rt△ADM中,AD=4,DM=CD-CM=3,
∴
故答案为:5.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与坐标轴交于点A(-1,0)和点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小,请求出点P的坐标;
(3)设二次函数的图象与x轴的另一交点为点C,连接BC,点N是线段BC上一点,过点N作y轴的平行线交抛物线于点M,求当四边形OBMN为平行四边形时,点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1.
(2)作△ABC关于坐标原点成中心对称的△A2B2C2.
(3)求B1的坐标 C2的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题,探究函数y=x2﹣2的图象与性质,小张根据学习函数的经验,对函数y=x2﹣2的图象与性质进行了研究,下面是小张的探究过程,请补充完整:
(1)函数y=x2﹣2的自变量取值范围是 .
(2)下表是y与x的几组对应值:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | |
y | … | n | 3 | 0 | ﹣1 | 0 | ﹣1 | 0 | 3 | m |
求m的值;
(3)如图,在平面直角坐标系xOy中,算出了以上表中各对对应值为坐标的点,根据算出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第四象限内的最低点是1,﹣1),结合函数的图象,写出该函数的其他性质(一条即可);
(5)根据图象回答:方程x2﹣2=﹣有 个实数解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=4cm,AB=8cm,点P从点A出发沿边上向点匀速运动,同时点从点出发沿边上向点匀速运动,速度都是,运动时间是,交于点,点关于的对称点是,射线分别与,交于点,.
(1)= °;QF= ,= .(用含的代数式表示)
(2)当点与点重合时, 如图②,求的值.
(3)探究:在点,运动过程中,
①的值是否是定值?若是,请求出这个值;若不是,请说明理由.
②为何值时,以点,,为顶点的三角形与相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5 s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当时△BPQ的面积S(cm2)与点P的运动时间t(s)的函数图象.
(1)CD = , ;
(2)当点P在边AB上时,为何值时,使得△BPQ与△ABC为相似?
(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)的对称轴与x轴交于点A,将点A向右平移3个单位长度,向上平移2个单位长度,得到点B.
⑴点A的坐标为 ,点B的坐标为 ;
⑵若a=﹣1,当m﹣1≤x≤m+1时,函数y=ax2﹣4ax+3a﹣2的最大值为﹣10,求m的值;
⑶若抛物线与线段AB有公共点,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com