【题目】如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5 s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当时△BPQ的面积S(cm2)与点P的运动时间t(s)的函数图象.
(1)CD = , ;
(2)当点P在边AB上时,为何值时,使得△BPQ与△ABC为相似?
(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时的值.
【答案】(1)2,10.8;(2)或6;(3)5或.
【解析】
试题(1)根据函数图象得到当点P运动到点A时,△BPQ的面积为18,利用三角形面积公式可计算出BD=6,则CD=2,当t=5s时,AP=4,点Q在D点,作PH⊥BC于H,在Rt△ABC中根据勾股定理计算出AB=10,再证明△BPH∽△BAC,利用相似比计算出PH,然后根据三角形面积公式得到S△PBQ,即a=S△PBQ;
(2)分类讨论:当3<t≤5,点Q在D点,BP=16﹣2t,若PD⊥BC得到△BPQ∽△BAC,利用相似比得t值;当5<t≤8,DQ=t﹣5,BQ=11﹣t,BP=16﹣2t,当∠PQB=90°时,△BPQ∽△BAC,利用相似比得t值;当∠BPQ=90°时,△BPQ∽△BAC,利用相似比得t值;
(3)PB=16﹣2t,BQ=11﹣t,分类讨论:当BP=BQ,则16﹣2t=11﹣t,解方程得t=5;当PB=PQ,作PM⊥BC于M,根据等腰三角形的性质得则BM=BQ=,再证明△BPM∽△BAC,利用相似比得t值.
试题解析:(1)当点P运动到点A时,△BPQ的面积为18,∴6BD=18,解得BD=6,
∴CD=BC﹣BD=2,
当t=5s时,AP=2×5﹣6=4,点Q在D点,点P在AB上如图①,作PH⊥BC于H,
在Rt△ABC中,AC=6,BC=8,∴AB=10,
∵PH∥AC,∴△BPH∽△BAC,∴PH:AC=BP:BA,即PH:6=(10-4):10,解得PH=,
∴S△PBQ=,即;故答案为:2,;
(2)点P在边AB上,
当3<t≤5,点Q在D点,BP=16﹣2t,
若PD⊥BC,△BPQ∽△BAC,∴BP:BA=BD:BC,即,解得;
当5<t≤8,DQ=t﹣5,则BQ=8﹣2﹣(t﹣5)=11﹣t,BP=16﹣2t,
当∠PQB=90°时,△BPQ∽△BAC,如图②,
∵△BPQ∽△BAC,∴BP:BA=BQ:BC,即,解得,不合题意舍去;
当∠BPQ=90°时,△BPQ∽△BAC,如图③,
∵△BPQ∽△BCA,∴BP:BC=BQ:BA,即,解得,
综上所述,当或时,△BPQ与△ABC为相似;
(3)PB=16﹣2t,BQ=11﹣t,
当BP=BQ,则16﹣2t=11﹣t,解得t=5;
当PB=PQ,作PM⊥BC于M,如图④,则BM=BQ=,
∵PM∥AC,∴△BPM∽△BAC,∴BP:BA=BM:BC,即,解得,
综上所述,当△BPQ是以BP为腰的等腰三角形时t的值为5或.
科目:初中数学 来源: 题型:
【题目】如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,则= .
(2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为 .
(3)若是“倍根方程”,求代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,点E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,连接AF、DF,则的最小值是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙M与x轴交于A、B两点,与y轴切于点C,且OA,OB的长是方程x2﹣4x+3=0的解.
(1)求M点的坐标.
(2)若P是⊙M上一个动点(不包括A、B两点),求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.
(1)求B点的坐标及二次函数的解析式;
(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;
(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B是反比例函数图象上的两点,过点A作AC⊥y轴,垂足为C,交OB于点D,且D为OB的中点,若△ABO的面积为4,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com