【题目】如图,AB是△ACD的外接圆⊙O的直径,CD交AB于点F,其中AC=AD,AD的延长线交过点B的切线BM于点E.
(1)求证:CD∥BM;
(2)连接OE交CD于点G,若DE=2,AB=4,求OG的长.
【答案】(1)见解析;(2)OG=.
【解析】
(1)根据垂径定理得AB⊥CD,结合切线的性质,得AB⊥BM,进而即可得到结论;
(2)连接BD,证明BAD~EAB,易得AB2=ADAE,从而求出AE=10,根据勾股定理得BE=2,OE=2,由DF∥BE,根据平行线分线段成比例定理可得AF=,OF=,由FG∥BE,根据平行线分线段成比例定理即可求解.
(1)∵AB是△ACD的外接圆⊙O的直径,BM是⊙O的切线,
∴AB⊥BM,
∵AC=AD,
∴,
∴AB⊥CD,
∴CD∥BM;
(2)连接BD,
∵AB是⊙O的直径,
∴BD⊥AE,
∵AB⊥BE,
∴∠ADB=∠ABE=90°,
又∵∠BAD=∠EAB,
∴BAD~EAB,
∴AB2=ADAE,
∴(4)2=AD(AD+2),
∴AD=8或AD=-10(舍去),
∴AE=10,
∴BE===2,
∴OE==2,
∵DF∥BE,
∴=,
∴=,
∴AF=,
∴OF=AF-OA=,
∵FG∥BE,
∴=,
∴=,
∴OG=.
科目:初中数学 来源: 题型:
【题目】已知点A(-2,1),B(0,4),C(8,16),O(0,0),P(m,n),抛物线y=ax2(a≠0)经过A,B,C,其中的一点,
(1)求抛物线y=ax2(a≠0)的解析式;
(2)若直线y=mx(m≠0)与直线y=nx(n≠0)分别经过点A与点C,判断点P(m,n)是否在反比例函数y=-的图象上;
(3)若点P(m,n)是反比例函数y=-的图象上任一点,且直线y=mx(m≠0)与直线y=nx(n≠0)分别与抛物线y=ax2(a≠0)交于点M,点N(不同于原点),求证:M,B,N三点在一条直线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元时,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为x(元/件),每月饰品销量为y(件),月利润为w(元).
(1)直接写出y与x之间的函数关系式;
(2)如何确定售价才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制售价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=ABAC;
(3)已知⊙O的半径为3.
①若=,求BC的长;
②当为何值时,ABAC的值最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,cosA=,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,点A,B,C,D都在边长为1的小正方形网格的格点上,过点M(1,-2)的抛物线y=mx2+2mx+n(m>0)可能还经过( )
A.点AB.点BC.点CD.点D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第1个正方形的面积为___;第4个正方形的面积为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;
(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线经过、两点,与x轴交于另一点B.
求抛物线的解析式;
已知点在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
如图2,若抛物线的对称轴为抛物线顶点与直线BC相交于点F,M为直线BC上的任意一点,过点M作交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com