分析 (1)延长AE交BC的延长线于G点,如图1,由正方形性质得AD∥CG,∠D=∠BCD=∠DCG=90°,再证明△ADE≌△GCE得到AE=GE,∠DAE=∠G,接着证明FA=FG,然后根据等腰三角形的性质得到结论;
(2)延长AE交BC的延长线于G点,如图2,证明的方法与(1)一样,也可得到EF⊥AE.
解答 解:(1)延长AE交BC的延长线于G点,如图1,![]()
∵四边形ABCD是正方形,
∴AD∥CG,∠D=∠BCD=∠DCG=90°,
∵E是DC的中点![]()
∴DE=EC,
在△ADE和△GCE中,
$\left\{\begin{array}{l}{∠D=∠ECG}\\{DE=CE}\\{∠AED=∠GEC}\end{array}\right.$,
∴△ADE≌△GCE,
∴AE=GE,∠DAE=∠G,
∵∠EAF=∠EAD,
∴∠FAE=∠G
∴FA=FG,
∴EF⊥AG,即EF⊥AE;
(2)仍然有“EF⊥AE”.证明如下:
延长AE交BC的延长线于G点,如图2,
同样可证明△ADE≌△GCE,
∴AE=GE,∠DAE=∠G,
∵∠EAF=∠EAD,
∴∠FAE=∠G
∴FA=FG,
∴EF⊥AG,即EF⊥AE.
点评 本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.也考查了等腰三角形的判定与性质和全等三角形的判定与性质
科目:初中数学 来源: 题型:选择题
| A. | -b<-a<b<a | B. | -a<b<-b<a | C. | -a<-b<b<a | D. | -b<-a<b<a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{16}{5}$ | C. | $\frac{25}{24}$ | D. | $\frac{5}{16}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com