【题目】已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.
(1)如图,求∠EOF的度数.
(2)如图,当OB、OC重合时,求∠AOE﹣∠BOF的值;
(3)当∠COD从图的位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.
【答案】(1)∠EOF=75°;(2)∠AOE﹣∠BOF=35°;(3)∠AOE﹣∠BOF=35°.
【解析】
(1)直接利用角平分线的性质求出∠EOC和∠COF,相加即可求出答案;
(2)利用角平分线的性质求出∠AOE和∠COF,相减即可求出答案;
(3)当OC边绕O顺时针旋转时,∠AOB是变化的,∠AOB=110°+3°t,∠BOD是不变化的,所以∠AOE-∠BOF值是不变化的;
(1)∵OE平分∠AOC,OF平分∠BOD,
∴∠EOF=∠EOB+∠BOF=∠AOB+
∠BOD,
∵∠AOB=110°,∠COD=40°,
∴∠EOF=75°;
(2)∵OE平分∠AOC,OF平分∠BOD,∠AOB=110°,∠COD=40°,
∴∠AOE=55°,∠BOF=20°,
∴∠AOE﹣∠BOF=35°;
(3)∵OF平分∠BOD,
∴∠BOF=∠BOD,
∵∠AOB=110°,BO边绕点O以每秒3°的速度顺时针旋转t秒,
∴∠AOB=110°+3°t,∠BOF=(40°+3°t),
∴OE平分∠AOB,
∴∠AOE=(110°+3°t),
∴∠AOE﹣∠BOF=(110°+3°t)﹣20°﹣
t=35°,
∴在旋转过程中∠AOE﹣∠BOF的值是不会因t的变化而变化,∠AOE﹣∠BOF=35°.
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为﹣6,点B在数轴上A点右侧,且AB=14,动点M从点A出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 ,点M表示的数 (用含t的式子表示);
(2)动点N从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点M,N同时出发,问点M运动多少秒时追上点N?
(3)若P为AM的中点,F为MB的中点,点M在运动过程中,线段PF的长度是否发生变化?若变化,请说明理由;若不变,请求出线段PF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,-1}=-1,min{2,2}=2. 类似地,若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的“取小函数”.
(1)设y1=x,y2=,则函数y=min{x,
}的图像应该是 中的实线部分.
(2)请在下图中用粗实线描出函数y=min{(x-2)2, (x+2)2}的图像,并写出该图像的三条不同性质:
① ;
② ;
③ ;
(3)函数y=min{(x-4)2, (x+2)2}的图像关于 对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张华随爸爸来西安游玩,他们还有四个旅游景点没去,分别是西安以东的兵马俑和华山,西安以西的乾陵和法门寺。由于仅剩两天的时间,张华不能游玩所有风景区,于是爸爸让张华从四张旅游景点图片(大小、形状及背面图案完全相同)中抽签确定.爸爸将这四张图片背面朝上洗匀后,让张华先随机抽取一张(不放回),再抽取一张,若抽到的两个景点都在西安以东或都在西安以西,则爸爸带他到这两个景点旅游,否则只能去一个景点旅游(兵马俑、华山、乾陵、法门寺这四张图片分别用B,H,Q,F表示).
(1)求张华抽到景点兵马俑的图片的概率;
(2)请你用列表或画树状图的方法求张华能去两个景点旅游的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________
②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.
(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动。探究:当∠ACB多少度时,CE⊥BC?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值 (单位:克) |
|
| 0 | 1 | 3 | 6 |
袋 数 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?
(3)若该种食品的合格标准为450±5克,求该食品的抽样检测的合格率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
(1)概念理解:
如图1,在中,
,
.
,试判断
是否是“等高底”三角形,请说明理由.
(2)问题探究:
如图2, 是“等高底”三角形,
是“等底”,作
关于
所在直线的对称图形得到
,连结
交直线
于点
.若点
是
的重心,求
的值.
(3)应用拓展:
如图3,已知,
与
之间的距离为2.“等高底”
的“等底”
在直线
上,点
在直线
上
的
倍.将
绕点
按顺时针方向旋转
得到
,
所在直线交
于点
.求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据: ≈1.414,、
≈1.732)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com