【题目】(2016广东省深圳市第23题)如图,抛物线与轴交于A、B两点,且B(1 , 0)。
(1)、求抛物线的解析式和点A的坐标;
(2)、如图1,点P是直线上的动点,当直线平分∠APB时,求点P的坐标;
(3)如图2,已知直线 分别与轴 轴 交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作 轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。
【答案】(1)、y=x+2x-3 ,A(-3,0);(2)、(,);(3)、△QDE的面积最大值为.
【解析】
试题分析:(1)、把点B的坐标代入解析式得出函数解析式和点A的坐标;(2)、若y=x平分∠APB,则∠APO=∠BPO,若P点在x轴上方,PA与y轴交于点,从而得出△≌△OPB,从而得出点P的坐标;当点P在x轴下方时,不成立;(3)、作QH⊥CF,根据直线CF的解析式得出点C和点F的坐标,求出tan∠OFC的值,△QDE是以DQ为腰的等腰三角形,根据DQ=DE得出函数解析式,则当DQ=QE时则△DEQ的面积比DQ=DE时大,然后设点Q的坐标,求出函数解析式得出最大值.
试题解析:(1)、把B(1,0)代入y=ax+2x-3 得a+2-3=0,解得a=1
∴y=x+2x-3 ,A(-3,0)
(2)、若y=x平分∠APB,则∠APO=∠BPO
如答图1,若P点在x轴上方,PA与y轴交于点 ∵∠POB=∠PO=45°,∠APO=∠BPO,PO=PO
∴△≌△OPB ∴=1, ∴PA: y=3x+1 ∴
若P点在x轴下方时, 综上所述,点P的坐标为
(3)、如图2,作QH⊥CF, CF:y=,C(,0),F(0,) tan∠OFC=
DQ∥y轴 ∠QDH=∠MFD=∠OFC tan∠HDQ=
不妨记DQ=1,则DH=,HQ= △QDE是以DQ为腰的等腰三角形
若DQ=DE,则
若DQ=QE,则
< 当DQ=QE时则△DEQ的面积比DQ=DE时大
设Q 当DQ=t=
以QD为腰的等腰△QDE的面积最大值为
科目:初中数学 来源: 题型:
【题目】(2016山西省第23题)综合与探究
如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )
A. BC=FD,AC=ED B. ∠A=∠DEF,AC=ED
C. AC=ED,AB=EF D. ∠ABC=∠EFD,BC=FD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1摆放,其中∠DAB=90°,求证:a2+b2=c2.
证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),
∴b2+ab=c2+a(b-a),
∴a2+b2=c2.
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2.
证明:连接 ,
∵S五边形ACBED= ,
又∵S五边形ACBED= ,
∴ ,
∴a2+b2=c2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com