【题目】(齐齐哈尔中考)如图所示,在四边形ABCD中.
(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;
(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称.
(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称,若对称请在图中画出对称轴或对称中心.
【答案】答案见解析.
【解析】试题分析:(1)使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称则过A、B、C、D分别作MN的垂线段,并延长使A1、B1、C1、D1到MN的距离等于A、B、C、D到MN的距离.再顺次连接A1、B1、C1、D1即可.(2)过A、B、C、D作射线AO、BO、CO、DO,在射线上分别取OA1=OA、OB1=OB、OC1=OC、OD1=OD,再顺次连接A1、B1、C1、D1即可.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,连接对称点作垂直平分线会发现对称轴为图形中的直线EF.
(1)
(2)如图所示;
(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图形中的直线EF
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD平分∠BAC,
(1)图①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度数.
(2)图②中,请你在直线AD上任意取一点E(不与点A、D重合),画EF⊥BC,垂足为F.已知∠B=α,∠C=β(β>a).求∠DEF的度数. (用α、β的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为,宽为的全等小矩形,且.(以上长度单位:)
(1)观察图形,发现代数式可以因式分解为_________________;
(2)若每块小矩形的面积为,四个正方形的面积和为,试求图中所有裁剪线(虚线部分)的长度之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】延庆区由于生态质量良好、自然资源丰富,成为北京的生态涵养区,是其生态屏障和水源保护地.为降低空气污染,919公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年载客量如表:
A型 | B型 | |
价格(万元/台) | a | b |
年载客量(万人/年) | 60 | 100 |
若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求a,b的值;
(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你设计一个方案,使得购车总费用最少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有 . (请写出所有正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,,分别在上,试说明∠MEN=∠INC+∠IME.
(2)如图2,在(1)的条件下,若平分,在上有一点,连接,使恰好平分,,且的补角比的3倍多,求的度数;
(3)如图3,在问题(1)(2)的条件下,若点是上一动点(不包含点和点),连接.平分,平分,过作,当点在线段上运动时,下列结论:①的值不变;②的度数不变,可以证明只有一个是正确的,请你做出正确选择并求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在△ABC中,AB=AC,点D是线段BC上一个动点,以AD为腰在线段AD的右侧作△ADE,且AD=AE。
(1)如图①,当∠BAC=∠DAE=90°时,试判断线段BD和CE有什么关系,并给出证明:
(2)在(1)的条件下,若BC=4.试判断四边形ADCE的面积是否发生变化,若不变,求出四边形ADCE的面积;若变化,请说明理由;
(3)如图②,若∠BAC=∠DAE=120°,BC=4,试探索△DCE的面积是否存在最大值,若存在,求出此时∠DEC的度数,若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com