精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____

【答案】

【解析】

AO为边作等腰直角△AOF,且∠AOF=90°,由题意可证△AOB≌△FOC,可得AB=CF=4,根据三角形的三边关系可求AF的最大值,即可得AO的最大值.

解:如图:以AO为边作等腰直角△AOF,且∠AOF=90°

∵四边形BCDE是正方形
∴BO=CO,∠BOC=90°
∵△AOF是等腰直角三角形
∴AO=FO,AF=AO
∵∠BOC=∠AOF=90°
∴∠AOB=∠COF,且BO=CO,AO=FO
∴△AOB≌△FOC(SAS)
∴AB=CF=4
若点A,点C,点F三点不共线时,AF<AC+CF;
若点A,点C,点F三点共线时,AF=AC+CF
∴AF≤AC+CF=3+4=7
∴AF的最大值为7
∵AF=AO
∴AO的最大值为
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在中,的中点.

1)如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.

①若点的运动速度与点的运动速度相等,后,是否全等?请说明理由

②若点的运动速度与点的运动速度不相等,则点的运动速度为多少时,能够使全等?

2)若点以第题②中的运动速度从点出发,点以原来的运动速度从点同时出发,都逆时针沿三边运动,经过多少时间,点与点第一次在的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2

(1)求k的取值范围;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。

(1)求证:∠DAC=∠BAC;

(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,猜想:此时与∠DAC相等的角是哪一个?并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中, 对角线ACBD相交于点O. EF是对角线AC上的两个不同点,当EF两点满足下列条件时,四边形DEBF不一定是平行四边形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,点DE分别在ABAC上,AEBD,∠B=∠CEDAE3DE,则线段CE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.

(1)求抛物线的函数解析式;

(2)P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S.

①求S关于m的函数表达式;

②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.

(1)求证:OE是CD的垂直平分线.

(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。

查看答案和解析>>

同步练习册答案