分析 已知等式整理求出x+$\frac{1}{x}$的值,原式利用完全平方公式变形后代入计算即可求出值.
解答 解:已知等式整理得:$\frac{1}{x+\frac{1}{x}+1}$=a,即x+$\frac{1}{x}$=$\frac{1}{a}$-1,
则原式=$\frac{1}{{x}^{2}+\frac{1}{{x}^{2}}+1}$=$\frac{1}{(x+\frac{1}{x})^{2}-1}$=$\frac{1}{(\frac{1}{a}-1)^{2}-1}$=$\frac{{a}^{2}}{1-2a}$.
故答案为:$\frac{{a}^{2}}{1-2a}$.
点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2015}{4032}$ | D. | $\frac{2017}{4032}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0个 | B. | 2014个 | C. | 2015个 | D. | 无数个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com