【题目】如图,已知的平分线BD和的平分线CD相交于D,
(1)AB与CD平行吗?请说明理由;
(2)如果,求的度数.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;
(3)设△PEQ的面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:若,求m,n的值.
解:,
.
,
,,
,,
,.
根据你的观察,探究下面的问题:
(1)已知:,求的值;
(2)已知:的三边长a,b,c都是正整数,且满足:,求的最大边c的值;
(3)已知:,,直接写出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红和小明在研究一个数学问题:已知AB∥CD,AB和CD都不经过点E,探索∠E与∠A,∠C的数量关系.
(一)发现:在如图1中,小红和小明都发现:∠AEC=∠A+∠C;
小红是这样证明的:如图7过点E作EQ∥AB.
∴∠AEQ=∠A( )
∵EQ∥AB,AB∥CD.
∴EQ∥CD( )
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是这样证明的:如图7过点E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
请在上面证明过程的横线上,填写依据:两人的证明过程中,完全正确的是 .
(二)尝试:
(1)在如图2中,若∠A=110°,∠C=130°,则∠E的度数为 ;
(2)在如图3中,若∠A=20°,∠C=50°,则∠E的度数为 .
(三)探索:
装置如图4中,探索∠E与∠A,∠C的数量关系,并说明理由.
(四)猜想:
(1)如图5,∠B、∠D、∠E、∠F、∠G之间有什么关系?(直接写出结论)
(2)如图6,你可以得到什么结论?(直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:;是等边三角形;;其中正确的是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度数;
(2)∠DAE的度数;
(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子里装有8个红球,4个黄球,3个白球,他们除了颜色外都相同,两人做游戏,游戏规则如下:一个人抓住袋子,一个人摸球,若摸出红球,摸球者胜,否则拿袋子的人获胜.
(1)如果你参加游戏,为了尽可能的获胜,你是做摸球的人还是做拿袋子的人?为什么?
(2)你说这个游戏公平吗?如果公平,说明理由:如果不公平,请给出修改建议,使它对双方都是公平的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com