精英家教网 > 初中数学 > 题目详情
14.已知一次函数图象如图,则它的表达式为y=2x-2.

分析 根据图象可知,该函数图象过(0,-2)(1,0)两点,代入函数解析式y=kx+b中,求出k、b的值,可得表达式.

解答 解:设该函数解析式为:y=kx+b(k≠0),
将(0,-2),(1,0)代入,
得:$\left\{\begin{array}{l}{b=-2}\\{k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=-2}\end{array}\right.$,
∴该函数表达式为:y=2x-2;
故答案为:y=2x-2.

点评 本题主要考查待定系数法求一次函数解析式,找到函数图象上的两点坐标代入解析式并求解是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.计算:${({-\sqrt{3}})^2}+({\sqrt{2015}-\sqrt{2016}})({\sqrt{2016}+\sqrt{2015}})-2|{\sqrt{\frac{1}{2}}-{{tan}^{-1}}{{45}°}}|$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)分解因式:a3b-ab3
(2)解方程:$\frac{3}{x-2}$+1=$\frac{x-3}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.计算$\sqrt{\frac{2}{3}}$÷$\sqrt{\frac{3}{2}}$的结果是(  )
A.0B.1C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么,在该正方体中与“设”字相对的字是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.问题情境:我们知道,两边及其中一边所对的角分别对应相等的两个三角形不一定全等,那么在什么情况下,这样的两个三角形才全等呢?为了研究这个问题,我们先思考下面几个问题:
(1)已知:线段a、b和∠a,作△ABC,使得∠A=∠a,AC=b,BC=a.
在图中的方框内完成作图,并在下列横线上填上适当的文字.
作法:①∠MAN=∠a;
②在射线AM上截取线段AC=b;
③以C为圆心、a长为半径画弧交射线AN于点B;
④连接CB,则△ACB就是所求作的三角形.
(2)计算:在上述△ABC中,若∠α=30°,a=5,b=8,则三角形第三边的长度为多少?
(3)在上述作图和计算中,我们发现满足条件的△ABC不唯一,即两边及其中一边所对的角分别对应相等的两个三角形不一定全等.那么再增加什么条件,便可判定两个三角形全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE.
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.△OAD∽△CDB,△ADB∽△ECB
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出A的坐标(3,0),顶点B的坐标(用a的代数式表示)(1,-4a).
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.平面内有一等腰直角三角板(∠ACB=90°) 直线过点A.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明,若不成立,也请说明理由;
(2)当三角板绕点A顺时针旋转至图3的位置时,线段AF、BF、CE之间又有怎样的数量关系,请写出你的猜想,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解下列分式方程.
(1)$\frac{2}{2x+1}+\frac{1}{2x+1}$=1
(2)$\frac{2}{x-1}+\frac{1}{1-x}=\frac{1}{2}$.

查看答案和解析>>

同步练习册答案