精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中B(3,2),BC⊥y轴于C,BA⊥x轴于A,点E在线段AB上从B向A以每秒1个单位的速度运动,运动时间为t秒(0<t<2).将BE沿BD折叠,使E点恰好落在BC上的F处.
(1)如图1,若E为AB的中点,请直接写出F、D两点的坐标:F() D(
(2)如图1,连接CD,在(1)的条件下,求证:CD=FD.

(3)如图2,在E点运动的同时,M点在OC上从C向O运动,N点在OA上从A向O运动,M的运动速度为每秒3个单位,N的运动速度为每秒a个单位.在运动过程中,△CMF能与△ANE全等吗?若能,求出此时a与t的值,若不能,请说明理由.

【答案】
(1)2;2;1;0
(2)

解:如图1,过点D作DG⊥BC于G,

由折叠得,DE=DF,∠BED=∠BFD,

∴∠AED=DFC,

在△AED和△GFD中

∴△AED≌△GFD,

∴GF=AE=1,

∵CF=2,

∴CG=1,

∴CG=FG,

∵DG⊥CG,

∴CD=FD


(3)

解:能全等,即:△CMF≌△AEN,

理由:

∵M点在OC上从C向O运动,N点在OA上从A向O运动,M的运动速度为每秒3个单位,N的运动速度为每秒a个单位,点E在线段AB上从B向A以每秒1个单位的速度运动,

∴CM=3t,AN=at,BE=t,

∴AE=2﹣t,

∵将BE沿BD折叠,使E点恰好落在BC上的F处,

∴BF=BE=t,

∴CF=BC﹣BF=3﹣t,

∵BF=BE,BC≠AB,

∴AE=CF,

∵△CMF与△ANE全等

∴△CMF≌△AEN,

∴CM=AE,CF=AN,

∴3t=2﹣t,3﹣t=at,

∴t= ,a=5.


【解析】解:(1)∵四边形ABCD是矩形,且B(3,2),
∴OA=BC=3,OC=AB=2,
∵E为AB的中点,
∴AE=BE=1,
由折叠得,BF=BE=1,
∴CF=2,
∴F(2,2),
如图1,
过点D作DG⊥BC于G,
由折叠得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中
∴△AED≌△GFD,
∴AD=DG=OC=2,
∴OD=1,
∴D(1,0),
所以答案是:2,2,1,0;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,EF过矩形ABCD对角线的交点O , 且分别交ABCDEF , 那么阴影部分的面积与矩形ABCD面积的大小关系是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC=ACB,以AC为直径的O分别交AB、BC于点M、N,点P在AB的延长线上,且CAB=2BCP.

(1)求证:直线CP是O的切线.

(2)若BC=2,sinBCP=,求点B到AC的距离.

(3)在第(2)的条件下,求ACP的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中不能判定四边形是矩形的是(  )

A. 四个角都相等的四边形 B. 有一个角为90°的平行四边形

C. 对角线相等的平行四边形 D. 对角线互相平分的四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)(2﹣π)0+( 2+(﹣2)3
(2)0.5200×(﹣2)202
(3)(﹣2x32(﹣x2)÷[(﹣x)2]3
(4)(3x﹣1)(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:

1)求图中的x的值;

2)求最喜欢乒乓球运动的学生人数;

3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形ABC的底边长BC=20cm,D是AC上的一点,且BD=16cm,CD=12cm.

(1)求证:BD⊥AC;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(  )

A. 3m2﹣2m2=1 B. 5m4﹣2m3=3m C. m2n﹣mn2=0 D. 3m﹣2m=m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,BC=5,CF=3,BF=4.求证:DE∥FC.

查看答案和解析>>

同步练习册答案