精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知直线l1y=2x+1

(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;

(2)若直线l2y=x+m与直线l1的交点在第二象限,求m的取值范围;

(3)如图,直线y=x+b与直线y=nx+2nn≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2nx+b的解集.

【答案】(1)平移后直线的解析式y=2x-7;(2)m<1;(3)-5<x<-2

【解析】

(1)利用两直线平行的问题,设平移后的直线解析式为然后把(1,-5)代入求出t即可;

(2)先解方程组 与直线的交点坐标为(m-1,2m-1),利用第二象限点的坐标特征得到,然后解不等式组即可;

(3)写出直线x轴上方,且直线在直线的下方所对应的自变量的范围即可.

(1)设平移后的直线解析式为y=2x+t

把(1,-5)代入得2+t=-5,解得t=-7,

所以平移后直线的解析式y=2x-7;

(2)解方程组

所以y=x+m与直线l1的交点坐标为(m-1,2m-1)

因为

所以m<1;

(3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2nx轴的交点坐标为(-2,0),

所以不等式组0<nx+2nx+b的解集为-5<x<-2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如下表和图①:

A

B

C

笔试

85

95

90

口试

80

85

(1)请将表格和图①中的空缺部分补充完整;

(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;

(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4∶3∶3的比确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式:①a0=1;②a2a3=a5;③22=﹣ ;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2 , 其中正确的是( )
A.①②③
B.①③⑤
C.②③④
D.②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等边三角形,点EAC边上,点DBC边上的一个动点,以DE为边作等边DEF,连接CF

(1)如图1,当点D与点B重合时,求证:ADE≌△CDF;

(2)如图2,当点D运动到如图2的位置时,猜想CECFCD之间的数量关系,并说明理由;

(3)如图3,当点DBC延长线上时,直接写出CECFCD之间的数量关系,不证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.
请你结合图中信息,解答下列问题:
(1)本次共调查了名学生;
(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;
(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】联想三角形外心的概念,我们可引入如下概念. 定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD= AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论: ①abc>0;②9a+3b+c<0;③c>﹣1;
④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣
其中正确的结论个数有(填序号)

查看答案和解析>>

同步练习册答案