【题目】如图,A(3,m)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,连接OB,交反比例函数y=的图象于点P(2,).
(1)求m的值和点B的坐标;
(2)连接AP,求△OAP的面积.
【答案】(1)m=4,点B的坐标为(8,4);(2)5.
【解析】
(1)将点P的坐标代入解析式求解可得解析式,再把A点的坐标代入得到m的值,利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;
(2)根据点B坐标和点P的坐标,得到AE=1、PE=3、PD=,再利用割补法求解可得.
(1)将P(2,)代入y═,得:k=12,
则反比例函数解析式为y=,
把A(3,m)代入y=得m=4,
如图,过点A作AC⊥x轴于点C,
则OC=3、AC=4,
∴OA==5,
∵AB∥x轴,且AB=OA=5,
∴点B的坐标为(8,4);
(3)∵点B坐标为(8,4),
点P坐标为(2,),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(2,4),
∴AE=2﹣3、PE=4﹣、PD=,
则△OAP的面积=×(4+)×(2﹣3)=5.
科目:初中数学 来源: 题型:
【题目】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.
(2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC 顶点 A(2,3).若以原点 O 为位似中心,画三角形 ABC
的位似图形△A′B′C′,使△ABC 与△A′B′C′的相似比为,则 A′的坐标为( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A. 若点(2,4)在其图象上,则(﹣2,4)也在其图象上
B. 当k>0时,y随x的增大而减小
C. 过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为k
D. 反比例函数的图象关于直线y=x和y=﹣x成轴对称
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点O为正方形ABCD对角线的交点,且正方形ABCD的边均与某条坐标轴平行或垂直,AB=4.
(1)如果反比例函数y=的图象经过点A,求这个反比例函数的表达式;
(2)如果反比例函数y=的图象与正方形ABCD有公共点,请直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线.
(1)求抛物线的解析式(化为一般式);
(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的切线,为切点,直线交于点、,过点作的垂线,垂足为点,交于点,延长与交于点,连接,.
(1)求证:直线为的切线;
(2)试探究线段、、之间的等量关系,并加以证明;
(3)若,,求的值和线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,结果精确到0.1cm)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com