精英家教网 > 初中数学 > 题目详情

【题目】如图,A(3m)是反比例函数y在第一象限图象上一点,连接OA,过AABx轴,连接OB,交反比例函数y的图象于点P(2)

(1)m的值和点B的坐标;

(2)连接AP,求△OAP的面积.

【答案】(1)m4,点B的坐标为(84)(2)5

【解析】

1)将点P的坐标代入解析式求解可得解析式,再把A点的坐标代入得到m的值,利用勾股定理求得ABOA5,由ABx轴即可得点B的坐标;

2)根据点B坐标和点P的坐标,得到AE1PE3PD,再利用割补法求解可得.

(1)P(2)代入y═,得:k12

则反比例函数解析式为y

A(3m)代入ym4

如图,过点AACx轴于点C

OC3AC4

OA5

ABx轴,且ABOA5

∴点B的坐标为(84)

(3)∵点B坐标为(84)

P坐标为(2)

过点PPDx轴,延长DPAB于点E

则点E坐标为(24)

AE23PE4PD

OAP的面积=×(4+)×(23)5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,yx成反比例).

1)根据图象分别求出血液中药物浓度上升和下降阶段yx之间的函数关系式.

2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC=8,BD=6,点EF分别是边ABBC的中点,点PAC上运动,在运动过程中,存在PEPF的最小值,则这个最小值是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC 顶点 A23).若以原点 O 为位似中心,画三角形 ABC

的位似图形A′B′C′,使ABC A′B′C′的相似比为,则 A′的坐标为(

A. (3, ) B. ( ,6) C. (3, )(-3,- ) D. ( ,6)(- ,-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点O为正方形ABCD对角线的交点,且正方形ABCD的边均与某条坐标轴平行或垂直,AB4

(1)如果反比例函数y的图象经过点A,求这个反比例函数的表达式;

(2)如果反比例函数y的图象与正方形ABCD有公共点,请直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线.

1)求抛物线的解析式(化为一般式);

2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的切线,为切点,直线于点,过点的垂线,垂足为点,交于点,延长交于点,连接.

1)求证:直线的切线;

2)试探究线段之间的等量关系,并加以证明;

3)若,求的值和线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).

(1)此时小强头部E点与地面DK相距多少?

(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,结果精确到0.1cm)

查看答案和解析>>

同步练习册答案