| A. | 40° | B. | 35° | C. | 60° | D. | 75° |
分析 由AC=BD,AE=BE,可推得DE=CE,根据条件可证得△ADE≌△BCE,于是得到∠D=∠C,根据三角形外角定理可求得∠C=60°,于是求得结论.
解答 解:AC=BD,AE=BE,
∴DE=CE,
在△ADE和△BCE中,
$\left\{\begin{array}{l}{AE=BE}\\{∠AED=∠BEC}\\{DE=CE}\end{array}\right.$,
∴△ADE≌△BCE,
∴∠D=∠C,
∵∠B=35°,∠1=95°,
∠C=∠1-∠B=60°,
∴∠D=60,
故选C.
点评 本题主要考查了全等三角形的判定与性质,三角形外角定理,熟练掌握三角形全等的判定与性质是解决问题的关键.
科目:初中数学 来源: 题型:解答题
| 图形编号 | (1) | (2) | (3) | (4) | (5) | (6) |
| 图形中的棋子 | 6 | 9 | 12 | 15 | 18 | 21 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com