精英家教网 > 初中数学 > 题目详情

【题目】ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是(  )

A. A: B: C =345 B. A=B+C

C. a2=(b+c)(b-c) D. a:b:c =12

【答案】A

【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.

详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;

根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;

根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;

根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.请你根据两幅图提供的信息解答下列问题:

(1)本次共调查了多少名教师?
(2)补全条形统计图;
(3)计算扇形统计图中扇形D的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4 ,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.

(1)求AP的长;
(2)求证:点P在∠MON的平分线上.
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME

正方形ABCD中,∠B=∠BCD=90°AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面请你完成余下的证明过程)

2)若将(1)中的正方形ABCD”改为正三角形ABC”(如图2,N∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

3)若将(1)中的正方形ABCD”改为边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对OAB连续作旋转变换,依次得到1234,则2017的直角顶点的坐标为.(  ).

A. (4032,0) B. (4032,) C. (8064,0) D. (8052, )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。

(1)篮球和排球的单价各是多少元?

(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE∥BF∠1与∠2互补.

1)试说明:FG∥AB;

2)若∠CFG=60°∠2=150°,则DEAC垂直吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队(有甲、乙两组)承接了世界园艺博览会的一项小型工程任务,这项任务规定在若干天内完成.已知甲组单独完成这项工程所需时间比规定时间多20天,乙组单独完成这项工程所需时间比规定时间多10天.如果甲、乙两组先合作15天,剩下的由甲单独做,则正好如期完成,那么规定的时间是多少天?(列方程解应用题)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到x轴的距离为 ,到y轴的距离为1.点C关于直线l的对称点为A,连接AC交直线l于B.

(1)求抛物线的表达式;
(2)直线y= x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y= x+m的表达式;
(3)若N为平面直角坐标系内的点,在直线y= x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案