精英家教网 > 初中数学 > 题目详情
点A(2,y1),B(3,y2)是抛物线上的两点,则y1与y2的大小关系为y1    y2(填“>”“<”或“=”).
<.

试题分析:分别把代入二次函数解析式,计算出对应的函数值,然后比较大小即可.当时,
;当时,。所以,故填.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为 (    )
A.y=3x2+3B.y=3x2-1 C.y=3(x-4)2+3D.y=3(x-4)2-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

永嘉县绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我县收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴交于点A(-1,0)、B(3,0),与轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为          时,四边形FQAC是平行四边形;当点F的坐标为           时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t=      ;当0<x≤4时, y2与x的函数关系为y2      ;当      ≤x<      时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数,当1≤x≤4,的取值范围为      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一坐标系中,一次函数与二次函数的大致图像可能是(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图像如图所示,则点Q()在(   )
A.第一象限 B.第二象限 C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案