精英家教网 > 初中数学 > 题目详情

【题目】某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为(  )

A. 50m B. 100m C. 160m D. 200m

【答案】C

【解析】分析:根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出ac的值得解析式;再根据对称性求B3B4的纵坐标后再求出总长度.

解答:解:

1)由题意得B00.5)、C10

设抛物线的解析式为:y=ax2+c

代入得 a=-c=

解析式为:y=-x2+

2)当x=0.2y=0.48

x=0.6y=0.32

∴B1C1+B2C2+B3C3+B4C4=2×0.48+0.32=1.6

所需不锈钢管的总长度为:1.6×100=160米.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点BF为圆心,以大于 BF的长为半径画弧交于点G,做射线AGBC与点E,若BF=12AB=10,则AE的长为( ).

A.17B.16C.15D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,ABACDEBC边上的点,连接ADAE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD

1)求证:ABD≌△ACD

2)如图2,若∠BAC120°,探索BDDECE之间满足怎样的数量关系时,CDE是正三角形;

3)如图3,若∠BAC90°,求证:DE2BD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).

1)如图1ABCDE为形内一点,连结BEDE得到∠BED,求证:∠E=∠B+D

悦悦是这样做的:

过点EEFAB.则有∠BEF=∠B

ABCD,∴EFCD

∴∠FED=∠D

∴∠BEF+FED=∠B+D

即∠BED=∠B+D

2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.

3)如图3EG1EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1G2,求证:∠FG1E+G2180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙OBC于点D,过点DEFAC于点E,交AB的延长线于点F

1)判断直线DE与⊙O的位置关系,并说明理由;

2)如果AB=5BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,在平面直角坐标系中,点ABE分别是x轴和y轴上的任意点. BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.

探究: 1)求∠C的度数.

发现: 2)当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.

应用:(3)如图2在五边形ABCDE中,∠A+∠B+∠E310°CF平分∠DCBCF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展低碳经济,某单位花12500引进了一条环保型生产线生产新产品,在生产过程中,每件产品还需成本40元,物价部门规定该产品售价不得低于100元/件且不得高于150元/件,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:

(1)求y与x之间的函数关系式,并写出x的取值范围;

(2)第一个月该单位是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;

(3)在(2)的前提下,即在第一个月盈利最大或亏损最小时,第二个月公司重新确定产品售价,能否使两个月共盈利达10800元?若能,求出第二个月的产品售价;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若A(﹣4n),B2,﹣4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点.

1)求反比例函数和一次函数的解析式;

2)求直线ABx轴的交点C的坐标及AOB的面积;

3)观察图象,直接写出反比例函数值大于一次函数值x取值范围.

查看答案和解析>>

同步练习册答案