精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形的个数为(

A.3B.4C.5D.6

【答案】C

【解析】

分别以3为底和以3为腰构造等腰三角形即可.注意等腰三角形的大小不同.

①以A为圆心,以3为半径作弧,交ADAB两点,连接即可,此时三角形为腰为3的等腰三角形;

②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交ADAB两点,连接即可

理由如下:∵四边形ABCD为正方形,

∴∠BAC=∠DAC=45°,

∵EF⊥AC

∴△AEH与△AHF为等腰直角三角形

∴EF=EH+FH=AH+AH=3.且AE=AF=

故△AEF为底为3的等腰三角形;

③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可,此时三角形为腰为3的等腰三角形;

④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BCDC两点,然后连接A与这两个点即可;

理由如下:与②同理可证EF=3,且EC=FC,

在△DEC和△DFC中,

∵AC=AC,∠ACE=∠ACF,EC=FC

∴△DEC≌△DFC

∴AE=AF,

故△AEF为底为3的等腰三角形.

⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可根据垂直平分线上的点到线段两端距离相等,三角形为底为3的等腰三角形.

故满足条件的所有图形如图所示:

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA8米,距离O2米处的棚高BC米.

(1)求该抛物线的函数关系式;

(2)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用直尺和圆规画一个角等于已知角是运用了全等三角形的对应角相等这一性质其全等的依据是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC与△ADE中,AB=ACAD=AE,∠BAC=DAE=40°,试探究线段BDCE的数量关系与直线BDCE相交构成的锐角的度数.

1)如图①,当点DE分别在△ABC的边ABAC上时,BDCE的数量关系是___________,直线BDCE相交构成的锐角的度数是_____________.

2)将图①中△DAE绕点A逆时针旋转一个角度到图②的位置,则(1)中的两个结论是否仍然成立?说明理由.

3)将图②中△DAE继续绕点A按逆时针方向继续旋转到点D落在CA的延长线时,请画出图形,并直接写出(1)中的两个结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;

(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.

(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,已知ABC中,AC=BC=13AB=10ABC的顶点AB分别在射线OMON上,当点BON上运动时,A随之在OM上运动,ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)现有一个六面分别标有数字123456且质地均匀的正方形骰子,另有三张正面分别标有数字123的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.

1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;

2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

同步练习册答案