精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

【答案】C

【解析】

根据等腰三角形的性质得到∠CDA=A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=BCD,根据三角形外角性质可知∠B+BCD=CDA,进而求得∠BCD=25°,根据图形可知∠ACB=ACD+BCD,即可解决问题.

CD=AC,∠A=50°

∴∠CDA=A=50°

∵∠CDA+A+DCA=180°

∴∠DCA=80°

根据作图步骤可知,MN垂直平分线段BC

BD=CD

∴∠B=BCD

∵∠B+BCD=CDA

2BCD=50°

∴∠BCD=25°

∴∠ACB=ACD+BCD=80°+25°=105°

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数a0)图象的顶点为D,其图象与x轴的交点AB的横坐标分别为﹣13,则下列结论正确的是( )

A. 2a﹣b=0

B. a+b+c0

C. 3a﹣c=0

D. a=时,△ABD是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.

(1)求证:DE=CE.

(2)若∠CDE=35°,求∠A 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点EMNBCABM,交ACN,若△ABC 、△AMN周长分别为13cm8cm.

1)求证:△MBE为等腰三角形;

2)线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,点D、点E分别在边ABBC上,DE=AE,且∠B=∠C=∠DEA=β

1)求证:△BDE≌△CEA

2)当∠DEB=β 时,

①求 β 的值;

②若将△AEC绕点E顺时针旋转,使得∠DEA =90°,如图2所示,其余条件不变,连结ABCE的延长线于F,求证:CF=CA .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在解方程x2x+1=0的时候,奇奇的方法别出心裁:

解:移项得:x2+1=x,变形得:x2+1=x=(+)x①,由于原方程中x≠0,故可以在①的两边同时除以x得:x+=+解得:x1=,x2=

这是利用对称式的典型范例,下面的问题需要你来完成:

(1)直接写出方程x﹣=b﹣的解:

(2)由(1)的结论解关于x的方程:x﹣=a﹣(a≠2)

(3)模仿奇奇的解法,解方程:x2x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形的个数为(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,点PAC边上的一点,延长BP至点D,使得AD=AP,当ADAB时,过点DDEACE

(1)求证:∠CBP=ABP;

(2)ABBC=4AC=8.求AB的长度和DE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)学校组织学生参加综合实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如下表所示:

第1天

第2天

第3天

第4天

售价x(元/双)

150

200

250

300

销售量y(双)

40

30

24

20

(1)观察表中数据,xy满足什么函数关系?请求出这个函数关系式;

(2)若商场计划每天的销售利润为3000元,则其单价定为多少元?

查看答案和解析>>

同步练习册答案