精英家教网 > 初中数学 > 题目详情

【题目】在解方程x2x+1=0的时候,奇奇的方法别出心裁:

解:移项得:x2+1=x,变形得:x2+1=x=(+)x①,由于原方程中x≠0,故可以在①的两边同时除以x得:x+=+解得:x1=,x2=

这是利用对称式的典型范例,下面的问题需要你来完成:

(1)直接写出方程x﹣=b﹣的解:

(2)由(1)的结论解关于x的方程:x﹣=a﹣(a≠2)

(3)模仿奇奇的解法,解方程:x2x+4=0.

【答案】(1) x1=b,x2=﹣;(2) x1=a,x2=;(3) x1=3,x2=

【解析】

(1)由题意直接可以得到结果;

(2)先将原方程化为对称式x﹣2﹣=a﹣2﹣根据(1)得到x﹣2=a﹣2x﹣2=﹣然后算出x的值即可;

(3)先将原方程化为x+=3+然后根据(1)直接可得到结果.

(1)①x1=bx2=﹣

(2)原方程化为x﹣2﹣=a﹣2﹣

可得x﹣2=a﹣2x﹣2=﹣

x1=a,x2=

经检验:x1=ax2= 是分式方程的解;

(3)原方程化为x+=3+

x1=3,x2=

经检验:x1=3,x2= 是分式方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点MN分别为OAOB边上动点,则MNP周长的最小值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC边上的一点,ABDBBE平分∠ABC,交AC边于点E,连接DE

(1)求证:△ABE≌△DBE

(2)若∠A100°,∠C50°,求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发以每秒1cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足PA=PB时,求出此时t的值;

2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DEAB于点D,AC于点E,则△BEC的周长为(  )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;

(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.

(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.

(1)求证:△ABC为直角三角形.

(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AD平分∠BACBDAD,垂足为D,过DDEAC,交ABE,若BD=7AD=24,求线段DE的长.

查看答案和解析>>

同步练习册答案