精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C=90°,点PAC边上的一点,延长BP至点D,使得AD=AP,当ADAB时,过点DDEACE

(1)求证:∠CBP=ABP;

(2)ABBC=4AC=8.求AB的长度和DE的长度.

【答案】1)见详解;(2AB=10DE =4.

【解析】

1)要证∠CBP=ABP,只需证∠BPC=BDA即可,而题目告诉AP=AD,结论显然;

2)设AB的长为x,则BC可用x表示,用勾股定理建立方程即可解出x即可求出AB的长度,过点PPFBA于点F证明BCPBFP可求得BF=BC=6AF=AB-BF=4,证明PAFADE可得DE=AF=4.

(1)∵∠C=90°

∴∠CBP+BPC=90°

DABA

∴∠PBA+BDA=90°

AD=AP

∴∠BDA=DPA=BPC

∴∠CBP=ABP

(2)设AB=x

ABBC=4

BC=x4

AC=8

∴在RtABC,(x4)2+64=x2

解得:x=10

AB=10

过点PPFBA于点F,如图

BCPBFP中:

BCPBFP(AAS)

BF=BC=6

AF=4

DEAC

∴∠EAD+ADE=90°=PAF+EAD

∴∠PAF=ADE

PAFADE中,

PAFADE(AAS)

DE=AF=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】作图题(不写作法)已知:如图,在平面直角坐标系中.
1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标;

2)求△ABC的面积;

3)在x轴上画点P,使PA+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;

(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.

(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,已知ABC中,AC=BC=13AB=10ABC的顶点AB分别在射线OMON上,当点BON上运动时,A随之在OM上运动,ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.

(1)求证:△ABC为直角三角形.

(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)现有一个六面分别标有数字123456且质地均匀的正方形骰子,另有三张正面分别标有数字123的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.

1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;

2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点CCF平行于BAPQ于点F,连接AF

(1)求证:AED≌△CFD

(2)求证:四边形AECF是菱形.

(3)若AD=3,AE=5,则菱形AECF的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在4×8的网格纸中,每个小正方形的边长都为1,动点PQ分别从点DA同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t0t4).

1)请在4×8的网格纸图①中画出t3秒时的线段PQ.并求其长度;

2)若MBC的中点,PQM的面积为S,请用含有t的代数式来表示S

3)当t为多少时,△PQB是以PQ为腰的等腰三角形?

查看答案和解析>>

同步练习册答案