【题目】如图①,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).
(1)请在4×8的网格纸图①中画出t为3秒时的线段PQ.并求其长度;
(2)若M是BC的中点,记△PQM的面积为S,请用含有t的代数式来表示S;
(3)当t为多少时,△PQB是以PQ为腰的等腰三角形?
【答案】(1)图见解析,PQ=5;(2);(3)t=3 或时,△PQB是以PQ为腰的等腰三角形.
【解析】
根据点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位可知,当t=3秒时,DP=6,AQ=3即可画出线段PQ;
(2)利用割补法求三角形面积;
(3)设时间为t,则在t秒钟,P运动了2t个格,Q运动了t个格,分情况 PQ=BQ和PQ=BP,然后根据勾股定理列出关于t的方程,解得t即可.
如图所示:
由勾股定理得PQ= =5;
(2)∵M是BC的中点
∴CM=BM
(3)设时间为t,则在t秒钟,P运动了2t格,Q运动了t格
当PQ=BQ时,即(2t﹣t)2+42=(8﹣t)2,解得t=3(秒).
当PQ=BP时,(8﹣t)=8﹣2t,解得:t= ∴综上,t=3 或时,△PQB是以PQ为腰的等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过点D作DE⊥AC于E.
(1)求证:∠CBP=∠ABP;
(2)若AB-BC=4,AC=8.求AB的长度和DE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)学校组织学生参加综合实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
售价x(元/双) | 150 | 200 | 250 | 300 |
销售量y(双) | 40 | 30 | 24 | 20 |
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=6, AB=CD=10.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为( )
A.2或8B.或18C.或2D.2或18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
(1)求证:∠CBP=∠ADB.
(2)若OA=2,AB=1,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C. 先后两次掷一枚质地均匀的硬币,两次都出现反面
D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于函数y=﹣2x+1,下列结论正确的是( )
A. 图象必经过点(﹣2,1) B. 图象经过第一、二、三象限
C. 当x>时,y<0 D. y随x的增大而增大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com