精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点EMNBCABM,交ACN,若△ABC 、△AMN周长分别为13cm8cm.

1)求证:△MBE为等腰三角形;

2)线段BC的长.

【答案】1)详见解析;(25cm

【解析】

1)由BE平分∠ABC,得∠MBE=EBC,再由MNBC得∠MEB=EBC,所以∠MBE=MEB,由等角对等边可得MB=ME

2)同理可证NE=NC,△ABC的周长为AB+AC+BC,通过等量代换可得△AMN的周长为AB+AC,两者之差即为BC的长.

解:(1)∵BE平分∠ABC

∴∠MBE=EBC

MNBC

∴∠MEB=EBC

∴∠MBE=MEB

MB=ME

∴△MBE为等腰三角形

2)同理可证NE=NC

∴△AMN的周长=AM+ME+EN+AN=(AM+MB)+(NC+AN)=AB+AC=8cm

又∵△ABC的周长=AB+AC+BC=13cm

BC=13-8=5cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题(不写作法)已知:如图,在平面直角坐标系中.
1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标;

2)求△ABC的面积;

3)在x轴上画点P,使PA+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC边上的一点,ABDBBE平分∠ABC,交AC边于点E,连接DE

(1)求证:△ABE≌△DBE

(2)若∠A100°,∠C50°,求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用直尺和圆规画一个角等于已知角是运用了全等三角形的对应角相等这一性质其全等的依据是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发以每秒1cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足PA=PB时,求出此时t的值;

2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;

(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.

(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点CCF平行于BAPQ于点F,连接AF

(1)求证:AED≌△CFD

(2)求证:四边形AECF是菱形.

(3)若AD=3,AE=5,则菱形AECF的面积是多少?

查看答案和解析>>

同步练习册答案