如图 ,在矩形ABCD中 ,AB=10 , BC=5 . 若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为( )
A. 10 B. 8 C.
D. 6
![]()
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3
),反比例函数
的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
![]()
A.6
B.-6
C.12
D.-12![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.
(1)求∠D的度数;
(2)若
,求线段
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
.观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是 m.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com