【题目】如图,抛物线交轴于、两点,其中点坐标为,与轴交于点.
(1)求抛物线的函数表达式;
(2)如图①,连接,点在抛物线上,且满足.求点的坐标;
(3)如图②,点为轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线、分别交抛物线的对称轴于点、.请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
【答案】(1)(2)或(3)为定值
【解析】
(1)把点、坐标代入抛物线解析式即求得、的值.
(2)点可以在轴上方或下方,需分类讨论.①若点在轴下方,延长到,使构造等腰,作中点,即有,利用的三角函数值,求、的长,进而求得的坐标,求得直线的解析式后与抛物线解析式联立,即求出点坐标.②若点在轴上方,根据对称性,一定经过点关于轴的对称点,求得直线的解析式后与抛物线解析式联立,即求出点坐标.
(3)设点横坐标为,用表示直线、的解析式,把分别代入即求得点、的纵坐标,再求、的长,即得到为定值.
(1)∵抛物线经过点,.
∴,解得:.
∴抛物线的函数表达式为.
(2)①若点在轴下方,如图1,
延长到,使,过点作轴,连接,作中点,连接并延长交于点,过点作于点.
∵当,解得:,.
∴.
∵,,
∴,,,,
∴中,,,
∵,为中点,
∴,,
∴,即,
∵,
∴,
∴中,,,
∴,
∴.
∵,
∴,
∴中,,,.
∴,,
∴,,即,
设直线解析式为,
∴,解得:,
∴直线:.
∵,解得:(即点),,
∴.
②若点在轴上方,如图2,
在上截取,则与关于轴对称,
∴,
设直线解析式为,
∴,解得:,
∴直线:.
∵,解得:(即点),,
∴.
综上所述,点的坐标为或.
(3)为定值.
∵抛物线的对称轴为:直线,
∴,,
设,
设直线解析式为,
∴,解得:,
∴直线:,
当时,,
∴,
设直线解析式为,
∴,解得:,
∴直线:,
当时,,
∴,
∴,为定值.
科目:初中数学 来源: 题型:
【题目】家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m= ,n= ;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点,则以下结论:①无论取何值,的值总是正数;②;③其中正确结论是( )
A. ①②B. ①③C. ②③D. 都正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.
请你结合这些算式,解答下列问题:
(1)请你再写出另外两个符合上述规律的算式;
(2)验证规律:设两个连续奇数为2n+1,2n–1(其中n为正整数),则它们的平方差是8的倍数;
(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,,以AB为直径作半圆O,点P从点A出发,沿AD方向以每秒1个单位的速度向点D运动,点Q从点C出发,沿C8方向以每秒3个单位的速度向点B运动,两点同时开始运动,当一点到达终点后,另一点也随之停止运动。设运动时间为.
(1)设点M为半圆上任意一点,则DM的最大值为______,最小值为______.
(2)设PQ交半圆于点F和点G(点F在点G的上方),当时,求的长度;
(3)在运动过程中,PQ和半圆能否相切?若相切,请求出此时l的值,若不能相切,请说明理由;
(4)点N是半圆上一点,且,当运动时,PQ与半圆的交点恰好为点N,直接写出此时t的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.
施工时间/天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
累计完成施工量/米 | 35 | 70 | 105 | 140 | 160 | 215 | 270 | 325 | 380 |
下列说法错误的是( )
A. 甲队每天修路20米
B. 乙队第一天修路15米
C. 乙队技术改进后每天修路35米
D. 前七天甲,乙两队修路长度相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为,若测角仪的高度是,则旗杆的高度约为(精确到,参考数据:,,)( )
A. 8.5米B. 9米C. 9.5米D. 10米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形AOBC是正方形,点C的坐标是(4,0).
(Ⅰ)正方形AOBC的边长为 ,点A的坐标是 .
(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;
(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com