精英家教网 > 初中数学 > 题目详情

【题目】如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部的位置,在处测得旗杆顶端的仰角为,若测角仪的高度是,则旗杆的高度约为(精确到,参考数据:)(

A. 8.5B. 9C. 9.5D. 10

【答案】C

【解析】

DDEAB,根据矩形的性质得出BC=DE=6m根据正切函数的定义,由AE=DEtan53°算出AE的长,根据AB=AE+BE=AE+CD算出答案.

DDEAB于点E

∵在D处测得旗杆顶端A的仰角为53°

∴∠ADE=53°

BC=DE=6m

AE=DEtan53°≈6×1.33≈7.98m

AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FEAB于点E.点A到地面的垂直距离为50cm,求支撑角钢CDEF的长度各是多少.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线经过点

(1)满足的关系式及的值.

(2)时,若的函数值随的增大而增大,求的取值范围.

(3)如图,当时,在抛物线上是否存在点,使的面积为1?若存在,请求出符合条件的所有点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,其中点坐标为,与轴交于点.

1)求抛物线的函数表达式;

2)如图①,连接,点在抛物线上,且满足.求点的坐标;

3)如图②,点轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线分别交抛物线的对称轴于点.请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)方法选择

如图①,四边形的内接四边形,连接.求证:.

小颖认为可用截长法证明:在上截取,连接

小军认为可用补短法证明:延长至点,使得

请你选择一种方法证明.

(2)类比探究

(探究1

如图②,四边形的内接四边形,连接的直径,.试用等式表示线段之间的数量关系,并证明你的结论.

(探究2

如图③,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是______

(3)拓展猜想

如图④,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).

(1)若△BDE是以BE为底的等腰三角形,求t的值;

(2)若△BDE为直角三角形,求t的值;

(3)当S△BCE时,所有满足条件的t的取值范围 (所有数据请保留准确值,参考数据:tan15°=2﹣).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点分别在正三角形的三边上,且也是正三角形.若的边长为的边长为,则的内切圆半径为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程(米)与时间(分)的函数关系如图2所示.

1)求第一班车离入口处的路程(米)与时间(分)的函数表达式.

2)求第一班车从人口处到达塔林所蓄的时间.

3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聘聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴相交于两点,与轴交于点,且tan.设抛物线的顶点为,对称轴交轴于点.

1)求抛物线的解析式;

2为抛物线的对称轴上一点,轴上一点,且.

①当点在线段(含端点)上运动时,求的变化范围;

②当取最大值时,求点到线段的距离;

③当取最大值时,将线段向上平移个单位长度,使得线段与抛物线有两个交点,求的取值范围.

查看答案和解析>>

同步练习册答案