【题目】如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是( )
A. 45°B. 60°C. 50°D. 25°
【答案】C
【解析】
首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,继而求得答案.
连接AC,
∵MN是AE的垂直平分线,
∴AC=EC,
∴∠CAE=∠E,
∵AB+BC=BE,BC+EC=BE,
∴AB=EC=AC,
∴∠B=∠ACB,
∵∠ACB=∠CAE+∠E=2∠E,
∴∠B=2∠E,
∴∠BAC=180°∠B∠ACB=180°4∠E,
∵∠BAE=∠BAC+∠CAE=180°4∠E+∠E=105°
解得:∠E=25°,
∴∠B=2∠E=50°.
故选:C.
科目:初中数学 来源: 题型:
【题目】公园门票价格规定如下:
某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,且不足50人,经估算,如果两个班都以班为单位进行购票,则一共应付1240元,问:
(1)两个班各有多少个学生?
(2)如果两班联合起来,作为一个团体票能省多少钱?如果七(1)班单独组织去游园,作为组织者的你如何购票才最省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A. ①② B. ②③ C. ①③ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…
(1)第6个图中,从正面看有多少个正方形?表面积是多少?
(2)第n个图形中,从正面看有多少个正方形?表面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)23﹣17﹣(﹣7)+(﹣16)
(2)
(3)﹣22÷(﹣4)3+|0.8﹣1|×(2)2
(4)4xy+(3y2﹣2x2)﹣(5xy﹣2x2)﹣4y2
(5)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣,y=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD=BF,∠ACD=90°,AE平分∠BAC,BF⊥AE,交AC的延长线于F,且垂足为E,则下列结论:①AD=2BF; ②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 边上一动点, CE⊥BD 于 E.
(1)如图(1),若 BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC;
(2)如图(2),过点 A 作 AF⊥BE 于点 F,猜想线段 BE,CE,AF 之间的数量关系并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上两个质点A.B所对应的数为8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。
(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;
(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;
(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在10处,求此时B点的位置?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.
(1)求证:四边形DECF是平行四边形.
(2)当AC、BC满足何条件时,四边形DECF为菱形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com