精英家教网 > 初中数学 > 题目详情

【题目】如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O.

(1)求证:AD=AE;
(2)试猜想:OA与BC的位置关系,并加以证明.

【答案】
(1)证明:∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°,

△ACD和△ABE中,

∴△ACD≌△ABE(AAS),

∴AD=AE


(2)猜想:OA⊥BC.

证明:连接OA、BC,

∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°.

在Rt△ADO和Rt△AEO中,

∴Rt△ADO≌Rt△AEO(HL).

∴∠DAO=∠EAO,

又∵AB=AC,

∴OA⊥BC.


【解析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.

(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.

(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把两根钢条AA′,BB′的中点O连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出A′B′的长度,就可以知道工件的内径AB是否符合标准,你能简要说出工人这样测量的道理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣233×|2|﹣(﹣7+52

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件是必然事件的是(  )

A.明天太阳从西方升起

B.打开电视机,正在播放广告

C.掷一枚硬币,正面朝上

D.任意一个三角形,它的内角和等于180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(﹣ )=8,求a的值;
(3)若2☆x=m,( x)☆3=n(其中x为有理数),试比较m,n的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.

(1)求证:△DEF是等腰三角形;
(2)求证:∠B=∠DEF;
(3)当∠A=40°时,求∠DEF的度数.

查看答案和解析>>

同步练习册答案