精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,∠C=90°,∠B=30°,CB=4,点D是CB的中点,点E,F分别在AB,AC上,则△DEF的周长的最小值是2$\sqrt{7}$.

分析 作D关于AC的对称点G,作D关于AB的对称点H,连接GH交AC于FAB于E,则GH=△DEF的周长的最小值,由点D是CB的中点,得到BD=CD=2,根据已知条件得到DH=2DQ=4,∠HDB=60°,过H作HP⊥BC于P,解直角三角形得到PD=$\frac{1}{2}$DH=1,PH=$\sqrt{3}$,根据勾股定理即可得到结论.

解答 解:作D关于AC的对称点G,作D关于AB的对称点H,连接GH交AC于FAB于E,
则GH=△DEF的周长的最小值,
∵点D是CB的中点,
∴BD=CD=2,
∵∠B=30°,
∴DH=2DQ=4,∠HDB=60°
过H作HP⊥BC于P,
∴PD=$\frac{1}{2}$DH=1,PH=$\sqrt{3}$,
∵DG=2CD=4,
∴PG=5,
∴HG=$\sqrt{P{H}^{2}+P{G}^{2}}$=2$\sqrt{7}$.
∴△DEF的周长的最小值是2$\sqrt{7}$.
故答案为:2$\sqrt{7}$.

点评 本题考查的是最短线路问题及直角三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,在矩形ABCD中,AB=10,BC=12,P是边AD上的一个动点,将△ABP沿着BP折叠,得到△′ABP.若射线BA′恰好经过边CD的中点E,则四边形DPA′E的面积为$\frac{70}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,E、F是?ABCD对角线AC上的两点,且BE∥DF,求证:BF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,菱形ABCD中,∠ABC<90°,P为该菱形对角线BD上一动点,Q为BC边上一动点,若AC=30,PC+PQ的最小值为24,求菱形ABCD的边长(要求在备用图中画出必要的图形)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若式子$\frac{\sqrt{x-1}}{x+2}$在实数范围内有意义,则x的取值范围是(  )
A.x≥1且x≠0B.x>1 且x≠-2C.x≥1D.x≥1 且x≠-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,扇形OAB中,∠AOB=60°,扇形半径为3,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为$\frac{9}{8}π-\frac{9}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程组:
(1)$\left\{\begin{array}{l}{4x+y=5}\\{3x-2y=1}\end{array}\right.$              
(2)$\left\{\begin{array}{l}{x-y=4}\\{3x+y=16}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在?ABCD中,分别以AB、CD为边向外作等边△ABE和等边△CDF,
求证:EF和BD互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若满足方程组$\left\{\begin{array}{l}{3x+2y=2a+1}\\{2x+3y=a-1}\end{array}\right.$的x-y的值是2,则a的值是(  )
A.2B.4C.0D.不确定

查看答案和解析>>

同步练习册答案