精英家教网 > 初中数学 > 题目详情

【题目】一个有进水管与出水管的容器,从某时刻开始的内只进水不出水,在随后的内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量(单位:)与时间(单位:)之间的关系如图所示.

1)当时,求出关于的函数解析式;

2)每分钟的进水量与出水量各是多少?

【答案】1;(2)每分钟的进水量为,出水量为

【解析】

1)用待定系数法求出对应的函数关系式即可;

2)根据前4分钟即可求出每分钟的进水量,根据后8分钟的水量变化即可求出每分钟的出水量.

解:(1)设当时,关于的函数解析式为

将(420),(1230)两点代入,得

解得

∴当时,关于的函数解析式为

2)根据图像可知,每分钟的进水量为

设每分钟出水量为升,则

解得:

∴每分钟的进水量为,出水量为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校在参加了全市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:

小明:“选科学素养和人文素养的同学分别为人,人.”

小颖:“选数学素养的同学比选阅读素养的同学少人.”

小雯:“选科学素养的同学占样本总数的.”

1)这次抽样调查了多少名学生?

2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?

3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比,并求出“数学素养”所对应的圆心角度数;

4)该校八年级有学生人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?

[Failed to download image : blob:http://qbm.xkw.com/61c6a1d7-da76-4939-b41e-e8015f4fdd80]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1是正方形上的一点,连接,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.写出线段之间的数量关系,并说明理由;

2)当四边形为菱形,,点是菱形所在直线上的一点,连接,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点

①如图2,点在线段上时,请探究线段之间的数量关系,写出结论并给出证明;

②如图3,点在线段的延长线上时,交射线于点,若,直接写出线段的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进两种商品,购买1商品比购买1商品多花10元,并且花费300元购买商品和花费100元购买商品的数量相等.

1)求购买一个商品和一个商品各需要多少元;

2)商店准备购买两种商品共80个,若商品的数量不少于商品数量的4倍,并且购买商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是弧AB所对弦AB上一动点,过点PPM⊥ABAB于点M,连接MB,过点PPN⊥MB于点N.已知AB =6cm,设A 、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)

小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究

下面是小东的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.0

2.3

2.1

0.9

0

(说明:补全表格时相关数值保留一位小数)

(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为____________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别是轴上的点,且为线段的中点,轴正半轴上的任意一点,连结,以为边按顺时针方向作正方形

1)填空:点的坐标为______

2)记正方形的面积为,①求关于的函数关系式;②当时,求的值.

3)是否存在满足条件的的值,使正方形的顶点落在的边上?若存在,求出所有满足条件的的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.

活动一

如图3,将铅笔绕端点顺时针旋转,交于点,当旋转至水平位置时,铅笔的中点与点重合.

数学思考

1)设,点的距离

①用含的代数式表示:的长是_________的长是________

的函数关系式是_____________,自变量的取值范围是____________

活动二

2)①列表:根据(1)中所求函数关系式计算并补全表格.

6

5

4

3.5

3

2.5

2

1

0.5

0

0

0.55

1.2

1.58

1.0

2.47

3

4.29

5.08

②描点:根据表中数值,描出①中剩余的两个点

③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.

数学思考

3)请你结合函数的图象,写出该函数的两条性质或结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l及直线l外一点P.如图,

1)在直线l上取一点A,连接PA

2)作PA的垂直平分线MN,分别交直线lPA于点BO

3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q

4)作直线PQ

根据以上作图过程及所作图形,下列结论中错误的是(  )

A.OPQ≌△OABB.PQAB

C.APBQD.PQPA,则∠APQ60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线为常数,且)与轴从左至右依次交于AB两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D,点D的横坐标为-4

1)求直线的函数解析式;

2)求抛物线的函数解析式;

3)分别求出tanABCtanBAC的值;

4)在第一象限的抛物线上是否存在点P,使得以ABP为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案