精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,AD平分∠BAC,交BC于点D,点OAB上,⊙O经过AD两点,交AC于点E,交AB于点F

1)求证:BC是⊙O的切线;

2)若⊙O的半径是2cmE是弧AD的中点,求阴影部分的面积(结果保留π和根号)

【答案】(1)证明见解析 (2)

【解析】

1)连接OD,只要证明ODAC即可解决问题;

2)连接OEOEADK.只要证明△AOE是等边三角形即可解决问题.

1)连接OD

OA=OD,∴∠OAD=ODA

∵∠OAD=DAC,∴∠ODA=DAC,∴ODAC,∴∠ODB=C=90°,∴ODBC,∴BCO的切线.

2)连接OEOEADK

,∴OEAD

∵∠OAK=EAKAK=AK,∠AKO=AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S=S扇形OAESAOE22

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.

(1) 如图1,当点D在线段BC上时:

①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;

(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?

小敏在思考问题,有如下思路:连接AC.

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由参考小敏思考问题方法解决一下问题

(2)如图2,在(1)的条件下,若连接AC,BD.

①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,D是边BC的中点.

1如图1,求证:△ABD和△ACD的面积相等;

如图2,延长ADE,使DE=AD,连结CE,求证:AB=EC

2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:

求证:ADBC(即:直角三角形斜边上的中线等于斜边的一半)

已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB',若△ADB'与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动不包括 C,点 P运动的速度为1cm/s;Q点在AC上从C点运动到A不包括A,速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.

(1) t 为何值时,P、Q 两点的距离为 4cm?

(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1的圆心A在抛物线y=(x-3)2-1上,AB//x轴交 于点B(B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为(

A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,分别以顶点ABCD为圆心,1为半径画弧,四条弧交于点EFGH,则图中阴影部分的外围周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形 OABC 是矩形,点 B 的坐标为(4,3).

(1)直接写出AC两点的坐标;

(2)平行于对角线AC的直线 m 从原点O出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 m 与矩形 OABC 的两边分别交于点M、N,设直线m运动的时间为t(秒).

MNAC,求 t 的值;

OMN 的面积为S,当 t 为何值时,S=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图菱形ABCD对角线ACBD相交于点OAC=12cmBD=16cm.点P从点B出发沿BA方向匀速运动速度为1cm/s;同时直线EF从点D出发沿DB方向匀速运动速度为1cm/s,EFBD且与ADBDCD分别交于点EQF当直线EF停止运动时P也停止运动.连接PF设运动时间为ts)(0<t<8).解答下列问题

(1)t为何值时四边形APFD是平行四边形

(2)设四边形APFE的面积为ycm2),yt之间的函数关系式

(3)是否存在某一时刻t使S四边形APFES菱形ABCD=17∶40?若存在求出t的值并求出此时PE两点间的距离若不存在请说明理由

查看答案和解析>>

同步练习册答案