精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,ABACADCE是高,连接DE

1)求证:BC2DE

2)若∠BAC50°,求∠ADE的度数.

【答案】1)见解析;(2)∠ADE40°.

【解析】

1)根据等腰三角形的性质得到BDCD,根据直角三角形的性质即可得到结论;

2)根据等腰三角形的性质得到∠BADBAC,求得∠BAD25°,根据三角形的内角和定理得到∠BCE=∠BAD25°,于是得到结论.

解:(1)∵ABACADBC

BDCD

CEAB

∴∠BEC90°

DEBDCD

BC2DE

2)∵ABACADBC,,

∴∠BADBAC

∵∠BAC50°

∴∠BAD25°

ADBCCEAB

∴∠ADB=∠CEB90°

∵∠B=∠B

∴∠BCE=∠BAD25°

DECD

∴∠DEC=∠DCE25°

∴∠BDE50°

∴∠ADE40°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,以下结论:①abc0;②4acb2;③2a+b0;④其顶点坐标为(,﹣2);⑤当x时,yx的增大而减小;⑥a+b+c0正确的有(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为10的⊙中,弦所对的圆心角分别是,若,则弦的长等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC在平面直角坐标系中,点Ay轴上,点C轴上,OC=4,直线经过点A,交轴于点D,点E在线段BC上,EDAD.

1)求点E的坐标;

2)联结BD,求cotBDE的值;

3)点G在直线BC,且∠EDG=45°,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠BAC>90°,点DBC的中点,点EAC上,将CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是(  )

A. AE=EF B. AB=2DE

C. ADFADE的面积相等 D. ADEFDE的面积相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线x轴交于AB两点(点A在点B左侧),与y轴交于点D,点C为抛物线的顶点,过BC两点作直线BC,抛物线上的一点F的横坐标是,过点F作直线FG//BCx轴于点G.

1)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EFPF,当的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;

2)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别为点A′,点C′,连接A′C′A′KC′KA′C′K是否能为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下说法合理的是(  )

A. 小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是

B. 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖

C. 某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是

D. 小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACBC4tanB2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

1)求出yx的函数关系式

2问销售该商品第几天时,当天销售利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案