【题目】如图,半径为10的⊙中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
A. 18B. 16C. 10D. 8
【答案】B
【解析】
作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3,再利用勾股定理,可求得BH的长,继而求得答案.
作AH⊥BC于H,作直径CF,连结BF,如图,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
∴弧长DE=弧长BF,
∴DE=BF=12,
∵AH⊥BC,
∴CH=BH,
∵CA=AF,
∴AH为△CBF的中位线,
∴AH=BF=6.
∴BH===8,
∴BC=2BH=16.
故选B.
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).
(1)在旋转过程中,B′C的最小值是 ,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为
(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;
(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.
(1)在正方形网格中,作出△AB1C1;(不要求写作法)
(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.
解决问题:
(1)填空:如果,则的取值范围为 ;
(2)如果,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实践操作
如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中表明相应的字母.(保留作图痕迹,不写作法)
(1)①作的平分线,交于点;②以为圆心,为半径作圆.
综合运用
在你所作的图中,
(2)与⊙的位置关系是 ;(直接写出答案)
(3)若,,求⊙的半径.
(4)在(3)的条件下,求以为轴把△ABC旋转一周得到的圆锥的侧面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象与轴交于点.
(1)求该二次函数的解析式,并在下图中画出示意图;
(2)将该二次函数的图象向上平移几个单位长度,可使平移后所得图象经过坐标原点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com