精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两名同学下棋,甲执圆子,乙执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示,甲将第4枚圆子放入棋盘后所有棋子构成一个轴对称图形,甲放的位置是(

A. (-2,1) B. (-1,1) C. (-1,0) D. (-1,2)

【答案】B

【解析】根据题目中给出的两个棋子的坐标可知,原图中最右侧的圆子位于坐标原点O,并且可以确定如图①所示的平面直角坐标系.

在画出上述平面直角坐标系的棋盘上依次标注各选项所描述的第4枚圆子的位置(如图②至图⑤该圆子所在位置用相应的选项名称在图中标注).

观察图②至图⑤可以看出在四个选项中,只有按照B选项给出的坐标放置第4枚圆子才能使整个图形成为轴对称图形(图③中的虚线表示该图形的对称轴).

故本题应选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.

(1)求证:△BDE∽△CAD;

(2)若CD=2,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC∽△ADEAB30cmBD18cmBC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度数;

2DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.

(1)求抛物线对应的二次函数的表达式;

(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;

(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式kx+b>的解集;

(3)过点BBC⊥x轴,垂足为C,求SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是轴上使得∣PA—PB∣的值最大的点,Q是轴上使得QA+QB的值最小的点,则OP·OQ=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ACB中,∠C=90°,点OAB上,以O为圆心,OA长为半径的圆与ACAB分别交于点DE,且∠CBD=∠A

1)判断直线BD⊙O的位置关系,并证明你的结论;

2)若AD∶AO=8∶5BC=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中,ABC各顶点的坐标分别为:A40),B﹣14),C﹣31

1)在图中作A′B′C′使A′B′C′ABC关于x轴对称;

2)写出点A′B′C′的坐标;

3)求ABC的面积.

查看答案和解析>>

同步练习册答案