分析 (1)连接BC,由已知得∠ACB=2∠AOB=60°,AC=$\frac{1}{2}$AO=5,根据弧长公式求解;
(2)连接OD,由垂直平分线的性质得OD=OA=10,又DE=8,在Rt△ODE中,由勾股定理求OE,依题意证明△OEF∽△DEA,利用相似比求EF,从而求出点F的坐标,利用待定系数法求出二次函数的解析式,即可解答;
(3)存在.当以点E、C、F为顶点的三角形与△AOB相似时,分为①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,②当交点E在点C的右侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO.
解答 解:(1)如图1,连接BC![]()
∵A(10,0),
∴OA=10,CA=5,
∵∠AOB=30°,
∴∠ACB=2∠AOB=60°,
∴弧AB的长=$\frac{60×π×5}{180}$=$\frac{5π}{3}$;
(2)①若D在第一象限,
如图2,连接OD,![]()
∵OA是⊙C直径
∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分线,
∴OD=OA=10,
在Rt△ODE中,
OE=$\sqrt{O{D}^{2}-D{E}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴AE=AO-OE=10-6=4,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴$\frac{AE}{DE}=\frac{EF}{OE}$,即$\frac{4}{8}=\frac{EF}{6}$,
∴EF=3;
∴点F的坐标为(6,4),
设过点O、A、F的抛物线的解析式为y=ax2+bx+c,
把点O(0,0),A(10,0),F(6,4)代入y=ax2+bx+c,
得:
$\left\{\begin{array}{l}{c=0}\\{100a+10b+c=0}\\{36a+6b+c=4}\end{array}\right.$
解得:$\left\{\begin{array}{l}{a=-\frac{1}{6}}\\{b=\frac{5}{3}}\\{c=0}\end{array}\right.$
∴y=-$\frac{1}{6}{x}^{2}+\frac{5}{3}x$
②若D在第二象限,
如图3,连接OD![]()
∵OA是⊙C直径,
∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分线,
∴OD=OA=10,
在Rt△ODE中,
OE=$\sqrt{O{D}^{2}-D{E}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴AE=AO+OE=10+6=16,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴$\frac{AE}{DE}=\frac{EF}{OE}$,即=$\frac{16}{8}=\frac{EF}{6}$,
∴EF=12;
∴点F的坐标为(-6,-12),
设过点O、A、F的抛物线的解析式为y=ax2+bx+c,
把点O(0,0),A(10,0),F(-6,-12)代入的:
$\left\{\begin{array}{l}{c=0}\\{100a+10b+c=0}\\{36a-6b+c=-12}\end{array}\right.$
解得:$\left\{\begin{array}{l}{a=-\frac{1}{8}}\\{b=\frac{5}{4}}\\{c=0}\end{array}\right.$
∴y=-$\frac{1}{8}{x}^{2}+\frac{5}{4}x$.
(3)设OE=x,
①如图4,当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,![]()
当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC
中点,即OE=$\frac{5}{2}$,
∴E1($\frac{5}{2}$,0);
当∠ECF=∠OAB时,有CE=5-x,AE=10-x,
∴CF∥AB,有CF=$\frac{1}{2}$AB,
∵△ECF∽△EAD,
∴$\frac{CE}{AE}=\frac{CF}{AD}$,即$\frac{5-x}{10-x}=\frac{1}{4}$,解得:x=$\frac{10}{3}$,
∴E2($\frac{10}{3}$,0);
②当交点E在点C的右侧时,
∵∠ECF>∠BOA,
∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO
如图5,连接BE,![]()
∵BE为Rt△ADE斜边上的中线,
∴BE=AB=BD,
∴∠BEA=∠BAO,
∴∠BEA=∠ECF,
∴CF∥BE,
∴$\frac{CF}{BE}=\frac{OC}{OE}$,
∵∠ECF=∠BAO,∠FEC=∠DEA=90°,
∴△CEF∽△AED,
∴$\frac{CF}{AD}=\frac{CE}{AE}$,
而AD=2BE,
∴$\frac{OC}{2OE}=\frac{CE}{AE}$,
即$\frac{5}{2x}=\frac{x-5}{10-x}$,
解得:${x}_{1}=\frac{5+5\sqrt{17}}{4},{x}_{2}=\frac{5-5\sqrt{17}}{4}$<0(舍去),
∴E3($\frac{5+5\sqrt{17}}{4}$,0);
此时点E坐标为:E1($\frac{5}{2}$,0)、E2($\frac{10}{3}$,0)、E3($\frac{5+5\sqrt{17}}{4}$,0).
点评 本题考查了相似三角形的判定与性质,勾股定理的运用,圆周角定理,弧长公式的运用.关键是理解题意,根据基本条件,图形的性质,分类求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com