【题目】如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:
①;②;③图中有5对相似三角形;④.其中结论正确的个数是( )
A.1个B.2个C.4个D.3个
【答案】D
【解析】
如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MPMD=MAME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.
如图,设AC与PB的交点为N,
∵∠ABC=∠AED=90,∠BAC=∠DAE=30,
∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,
∴∠BAE=∠CAD,
∴△BAE∽△CAD,故①正确;
∵△BAE∽△CAD,
∴∠BEA=∠CDA,
∵∠PME=∠AMD,
∴△PME∽△AMD,
∴,
∴MPMD=MAME,故②正确;
∴,
∵∠PMA=∠EMD,
∴△APM∽△DEM,
∴∠APM=∠DEM=90,
∴AP⊥CD,故④正确;
同理:△APN∽△BCN,△PNC∽△ANB,
∵△ABC∽△AED,
∴图中相似三角形有6对,故③不正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】点为图形上任意一点,过点作直线垂足为,记的长度为.
定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;
定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;
(1)已知直线,平面内反比例函数在第一象限内的图象记作则 .
(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,
(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数
(1)通过配方将它写成的形式.
(2)当 时,函数有最 值,是 .
(3)当 时,随的增大而增大;)当 时,随的增大而减小.
(4)该函数图象由的图象经过怎样的平移得到?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形.
(1)请写出抛物线C2的解析式:_____.
(2)若点P(4037.5,a)在图形G上,则a=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承中华优秀传统文化,培养学生自主、团结协作能力,某校推出了以下四个项目供学生选择:.家乡导游;.艺术畅游;.体育世界;.博物旅行.学校规定:每个学生都必须报名且只能选择其中一个项目.学校对某班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解答下列问题:
(1)该班学生总人数是______人;
(2)将条形统计图补充完整,并求项目所在扇形的圆心角的度数;
(3)老师发现报名参加“博物旅行”的学生中恰好有两名男生,现准备从这些参加“博物旅行”的学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平。并燕、雀重一斤。问燕,雀一枚各重几何?”译文:“今有只雀、只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤。问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P(x1,y1)和点Q(x2,y2)是关于x的函数y=mx2﹣(2m+1)x+m+1(m为实数)图象上两个不同的点.对于下列说法:①不论m为何实数,关于x的方程mx2﹣(2m+1)x+m+1=0必有一个根为x=1;②当m=0时,(x1﹣x2)(y1﹣y2)<0成立;③当x1+x2=0时,若y1+y2=0,则m=﹣1;④当m≠0时,抛物线顶点在直线y=﹣x+1上.其中正确的是( )
A.①②B.①②③C.③④D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:△AEF≌△DEB;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com