精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线yx22ax+4a+2a是常数),

)若该抛物线与x轴的一个交点为(﹣10),求a的值及该抛物线与x轴另一交点坐标;

)不论a取何实数,该抛物线都经过定点H

①求点H的坐标;

②证明点H是所有抛物线顶点中纵坐标最大的点.

【答案】a=﹣,抛物线与x轴另一交点坐标是(00);()①点H的坐标为(26);②证明见解析.

【解析】

(I)根据该抛物线与x轴的一个交点为(-10),可以求得的值及该抛物线与x轴另一交点坐标;

(II)①根据题目中的函数解析式可以求得点H的坐标;

②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.

抛物线yx22ax+4a+2x轴的一个交点为(﹣10),

∴0=(﹣122a×(﹣1+4a+2

解得,a=﹣

∴yx2+xxx+1),

y0时,得x10x2=﹣1

即抛物线与x轴另一交点坐标是(00);

①∵抛物线yx22ax+4a+2x2+22ax2),

不论a取何实数,该抛物线都经过定点(26),

即点H的坐标为(26);

证明:抛物线yx22ax+4a+2=(xa2﹣(a22+6

该抛物线的顶点坐标为(a,﹣(a22+6),

则当a2时,﹣(a22+6取得最大值6

即点H是所有抛物线顶点中纵坐标最大的点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.

学生

垃圾类别

厨余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求8名学生中至少有三类垃圾投放正确的概率;

2)为进一步了解垃圾分类投放情况,现从8名学生里有害垃圾投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB=∠CAD,过点A作⊙O的切线,交CD的延长线于点E

1)判定直线CD与⊙O的位置关系,并说明你的理由;

2)若CB4CD8,①求圆的半径.②求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ 的图象经过A(﹣10),B30),与y轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BCx轴的垂线,交BC于点EF,交x轴于点MN

1)求这个二次函数的解析式;

2)求线段PE最大值,并求出线段PE最大时点P的坐标;

3)若SPMN3SPEF时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A13),B25),C42)(每个方格的边长均为1个单位长度)

1)将ABC平移,使点A移动到点A1,请画出A1B1C1

2)作出ABC关于O点成中心对称的A2B2C2,并直接写出A2B2C2的坐标;

3A1B1C1A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:

(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?

(2)在飞行过程中,小球从飞出到落地所用时间是多少?

(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在正方形ABCD中,点EF分别为边BCCD上的点,且∠EAF=45°AEAF分别交对角线BD于点MN,则下列结论正确的是_____.

①∠BAE+DAF=45°;②∠AEB=AEF=ANM;③BM+DN=MN;④BE+DF=EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB90°,∠ABC60°,BC4cmDBC的中点,若动点E1cm/s的速度从A点出发,沿着ABA的方向运动,设E点的运动时间为t秒(0t12),连接DE,当△BDE是直角三角形时,t的值为(  )

A.45B.47C.457D.479

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 为倡导低碳生活,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档ACCD的长分别为45cm60cm,且它们互相垂直,座杆CE的长为20cm,点ACE在同一条直线上,且∠CAB=75°,如图2

1)求车架档AD的长;

2)求车座点E到车架档AB的距离.

(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259tan75°=3.732)

查看答案和解析>>

同步练习册答案