分析 (1)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐标;
(2)作点D关于BC的对称点D′,连接OD′交BC于P,则这时的△POD的周长最小,即△POD的周长=OD′+OD,根据勾股定理得到OD′=$\sqrt{O{D}^{2}+DD{′}^{2}}$=$\sqrt{91}$,于是得到结论.
解答
解:(1)当P1O=OD=5时,由勾股定理可以求得P1C=3,
P2O=P2D时,作P2E⊥OA,
∴OE=ED=2.5;
当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
当P4D=OD=5时,作P4G⊥OA,由勾股定理,得
DG=3,
∴OG=8.![]()
∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4);
(2)作点D关于BC的对称点D′,连接OD′交BC于P,
则这时的△POD的周长最小,
△POD的周长=OD′+OD,
∵点D是OA的中点,
∴OD=5,DD′=8,
∴OD′=$\sqrt{O{D}^{2}+DD{′}^{2}}$=$\sqrt{91}$,
∴△POD的周长=$\sqrt{91}$+5.
点评 本题考查了轴对称-最小距离问题,矩形的性质,坐标与图形的性质,等腰三角形的性质,平行四边形的判定及性质,菱形的判定及性质,勾股定理的运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2.3×109 | B. | 0.23×109 | C. | 2.3×108 | D. | 23×107 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com