【题目】如图1,一次函数的图象与y轴交于点A,与反比例函数的图象交于点.
______;______;
点C是线段AB上的动点与点A、B不重合,过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求面积的最大值;
将中面积取得最大值的沿射线AB方向平移一定的距离,得到,若点O的对应点落在该反比例函数图象上如图,则点的坐标是______.
【答案】11
【解析】
由点B的横坐标利用反比例函数图象上点的坐标特征即可求出b值,进而得出点B的坐标,再将点B的坐标代入一次函数解析式中即可求出k值;
设,则,根据三角形的面积即可得出关于m的函数关系式,通过配方即可得出面积的最大值;
由可知一次函数的解析式以及点C、D的坐标,设点,根据平移的性质找出点、的坐标,由点在反比例函数图象上即可得出关于a的方程,解方程求出a的值,将其代入点的坐标中即可得出结论.
把代入中得:,
,
把代入得:,解得:,
故答案为:1,1;
设,则,
,
,,
当时,面积取最大值,最大值为;
由知一次函数的解析式为,
由知、
设,则,,
点在反比例函数的图象上,
,解得:或舍去,
经检验是方程的解.
点的坐标是
科目:初中数学 来源: 题型:
【题目】已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:△ACB∽△CDB;
(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,.
求反比例函数的解析式;
若、是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
(1)∠PBQ的度数是 ,∠PCQ的度数是 ;
(2)若∠A=70°,求∠P和∠Q的度数;
(3)若∠A=α,则∠P= ,∠Q= (用含α的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点,若平移点到点,使以点为顶点的四边形是菱形,则正确的平移方法是( )
A. 向左平移()个单位,再向上平移1个单位
B. 向左平移个单位,再向下平移1个单位
C. 向右平移个单位,再向上平移1个单位
D. 向右平移2个单位,再向上平移1个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6cm,BC=4cm,AC=3cm.将△ABC沿着与AB垂直的方向向上平移3cm,得到△DEF.
(1)四边形ABDF是什么四边形?
(2)求阴影部分的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察推理:如图①,在中,,直线过点,点在直线的同侧,,垂足分别为.求证:.
(2)类比探究:如图②,在中,,将斜边绕点逆时针旋转90°至,连接,求的面积.
(3)拓展提升:如图③,在中,,点在上,且,动点从点沿射线以每秒1个单位长度的速度运动,连接,将线段绕点逆时针旋转120°得到线段.要使点恰好落在射线上,求点运动的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com