精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰直角ABC中,AB=AC=8,以AB为直径的半圆O交斜边BCD,则阴影部分面积为(结果保留π)( )

A. 16 B. 24-4π C. 32-4π D. 32-8π

【答案】B

【解析】试题分析:连接AD,因为ABC是等腰直角三角形,故∠ABD=45°,再由AB是圆的直径得出∠ADB=90°,故ABD也是等腰直角三角形,所以S阴影=SABC-SABD-S弓形AD由此可得出结论.

解:连接ADOD

∵等腰直角ABC中,

∴∠ABD=45°.

AB是圆的直径,

∴∠ADB=90°

∴△ABD也是等腰直角三角形,

.

AB=8

AD=BD=4

S阴影=SABCSABDS弓形AD=SABCSABD(S扇形AODSABD)

=×8×8×4×4+××4×4

=32-164π+8

=244π.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x+c经过点A03),B﹣10),请解答下列问题:

1)求抛物线的解析式;

2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.

注:抛物线y=ax2+bx+ca≠0)的顶点坐标是().

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.

(1)求此抛物线的解析式;

(2)若点M为抛物线上一动点,是否存在点M,使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.

(3)在x轴上是否存在点N使△ADN为直角三角形?若存在,确定点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,规定:抛物线的伴随直线为.例如:抛物线的伴随直线为,即y=2x1

1)在上面规定下,抛物线的顶点坐标为   ,伴随直线为   ,抛物线与其伴随直线的交点坐标为      

2)如图,顶点在第一象限的抛物线与其伴随直线相交于点AB(点A在点B的左侧),与x轴交于点CD

①若∠CAB=90°,求m的值;

②如果点Pxy)是直线BC上方抛物线上的一个动点,PBC的面积记为S,当S取得最大值时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ACBC,垂足为CAC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DCDB

(1)求线段CD的长;

(2)求线段DB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点CAB的延长线上,AD平分∠CAE⊙O于点D,且AE⊥CD,垂足为点E

1)求证:直线CE⊙O的切线.

2)若BC=3CD=3,求弦AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张正三角形的纸片的边长为2cmDEF分别是边ABBCCA(含端点)上的点,设BDCEAFxcm),DEF的面积为ycm2).

1)求y关于x的函数表达式和自变量的取值范围;

2)求DEF的面积y的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACBC2.现分别任作ABC的内接矩形P1Q1M1N1P2Q2M2N2P3Q3M3N3,设这三个内接矩形的周长分别为c1c2c3,则c1+c2+c3的值是(  )

A. 6B. C. 12D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从DE两处测得路灯B的仰角分别为αβ,且tanα8tanβ,求灯杆AB的长度.

查看答案和解析>>

同步练习册答案