精英家教网 > 初中数学 > 题目详情

【题目】如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从DE两处测得路灯B的仰角分别为αβ,且tanα8tanβ,求灯杆AB的长度.

【答案】灯杆AB的长度为1.5.

【解析】

过点BBFCE,交CE于点F,过点AAGBF,交BF于点G,则FG=AC=15.25.设BF=4xEF=5xDF= ,由DE=22求得x,据此知BG=BF-GF,再求得∠BAG=BAC-CAG=30°可得AB=2BG

解:过点BBFCE,交CE于点F,过点AAGBF,交BF于点G,则FGAC15.25

由题意得∠BDEαtanβ

BF3x,则EF4x

RtBDF中,∵tanBDF

DF

DE22

x+5x22

x4

BF16

BGBFGF1615.250.75

∵∠BAC120°

∴∠BAG=∠BAC﹣∠CAG120°90°30°

AB2BG1.5

答:灯杆AB的长度为1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰直角ABC中,AB=AC=8,以AB为直径的半圆O交斜边BCD,则阴影部分面积为(结果保留π)( )

A. 16 B. 24-4π C. 32-4π D. 32-8π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少20件.

问应将每件售价定为多少元时,才能使每天利润为640元?

当售价定为多少时,获得最大利润;最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+mx+2x轴交于点AB,与y轴交于点C,点A的坐标为(10

1)求抛物线的解析式

2)在抛物线的对称轴l上找一点P,使PA+PC的值最小,求出点P的坐标

3)在第二象限内的抛物线上,是否存在点M,使△MBC的面积是△ABC面积的?若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图①,在ABC中,ABAC,∠BAC120°BC12,则AB的长度为 

2)如图②,⊙O的半径为16,弦AB16MAB的中点,P是⊙O上一动点,求PM的最大值;

3)如图③,在ABCABAC8,∠CAB120°DBC的中点,E是平面内一点,且ED2,连接BE,将EB绕点E逆时针旋转120°,得到EB,连接CBBB,四边形ABBC的面积是否存在最大值,若存在,求出四边ABBC的面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+cx轴交于AD两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(10),点B的坐标为(04),已知点Em0)是线段DO上的动点,过点EPEx轴交抛物线于点P,交BC于点G,交BD于点H

1)求该抛物线的解析式;

2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

3)在(2)的条件下,是否存在这样的点P,使得以PBG为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在水果销售旺季,某水果店购进一优质水果,进价为20/千克,售价不低于20/千克,且不超过32/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.

销售量y(千克)

34.8

32

29.6

28

售价x(元/千克)

22.6

24

25.2

26

1)某天这种水果的售价为23.5/千克,则当天该水果的销售量 千克.

2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

3)当售价定为多少元时,当天销售这种水果获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(21)B(1-2)C(3-1)P(mn)是△ABC的边AB上一点.

(1)画出△A1B1C1,使△A1B1C1与△ABC关于点O成中心对称,并写出点AP的对应点A1P1的坐标.

(2)以原点O为位似中心,位似比为12,在y轴的左侧,画出将△A1B1C1放大后的△A2B2C2,并分别写出点A1P1的对应点A2P2的坐标.

(3)sinB2A2C2的值.

查看答案和解析>>

同步练习册答案